Stress transfer in polyacrylonitrile/carbon nanotube composite fibers

被引:49
作者
Newcomb, Bradley A. [1 ]
Chae, Han Gi [1 ]
Gulgunje, Prabhakar V. [1 ]
Gupta, Kishor [1 ]
Liu, Yaodong [1 ]
Tsentalovich, Dmitri E. [2 ,3 ]
Pasquali, Matteo [2 ,3 ,4 ]
Kumar, Satish [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, Houston, TX 77005 USA
[4] Rice Univ, Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
关键词
Carbon nanotubes; Nanocomposite; Stress transfer; WALLED CARBON NANOTUBES; SHEAR-STRENGTH; RAMAN; REINFORCEMENT; DEFORMATION; ORIENTATION; SUSPENSION; EFFICIENCY; MODULUS; SPECTRA;
D O I
10.1016/j.polymer.2014.04.008
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Gel spun polyacrylonitrile/carbon nanotube (PAN/CNT) composite fibers have been produced, and the stress-induced G' Raman band shifts in the CNTs have been monitored to observe stress transfer during fiber strain. Improvements in CNT quality. CNT dispersion, and post-processing fiber drawing are shown to increase the stress transfer from the matrix to the CNT. Radial breathing mode (RBM) intensity of specific CNT chiralities confirms CNT debundling during fiber processing. During PAN/CNT fiber straining, there reaches a plateau in the CNT G' downshift, signifying that the stress on the CNT is maintained despite continued straining of the PAN/CNT fiber. Correlating CN'T strain with CNT modulus and volume fraction allows for the interfacial shear strength (tau(i)) of the PAN-CNT interface to be determined. The as-spun and fully drawn PAN/CNT-A (99/1) nano composite fibers exhibit tau(i) of 13.1 and 30.9 MPa, respectively, while an improved CNT dispersion (PAN/CNT-A (99.9/0.1)) results in tau(i) equal to 44.3 MPa. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2734 / 2743
页数:10
相关论文
共 61 条
  • [1] Structure-assigned optical spectra of single-walled carbon nanotubes
    Bachilo, SM
    Strano, MS
    Kittrell, C
    Hauge, RH
    Smalley, RE
    Weisman, RB
    [J]. SCIENCE, 2002, 298 (5602) : 2361 - 2366
  • [2] Measurement of carbon nanotube-polymer interfacial strength
    Barber, AH
    Cohen, SR
    Wagner, HD
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (23) : 4140 - 4142
  • [3] Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix
    Barber, AH
    Cohen, SR
    Kenig, S
    Wagner, HD
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (15) : 2283 - 2289
  • [4] Chemistry of Carbon Nanotubes for Everyone
    Basu-Dutt, Sharmistha
    Minus, Marilyn L.
    Jain, Rahul
    Nepal, Dhriti
    Kumar, Satish
    [J]. JOURNAL OF CHEMICAL EDUCATION, 2012, 89 (02) : 221 - 229
  • [5] Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber
    Chae, Han Gi
    Choi, Young Ho
    Minus, Marilyn L.
    Kumar, Satish
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (3-4) : 406 - 413
  • [6] Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile
    Chae, HG
    Minus, ML
    Kumar, S
    [J]. POLYMER, 2006, 47 (10) : 3494 - 3504
  • [7] A comparison of reinforcement efficiency of various types of carbon nanotubes in poly acrylonitrile fiber
    Chae, HG
    Sreekumar, TV
    Uchida, T
    Kumar, S
    [J]. POLYMER, 2005, 46 (24) : 10925 - 10935
  • [8] Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite
    Chang, TE
    Jensen, LR
    Kisliuk, A
    Pipes, RB
    Pyrz, R
    Sokolov, AP
    [J]. POLYMER, 2005, 46 (02) : 439 - 444
  • [9] Direct Measurements of the Mechanical Strength of Carbon Nanotube-Poly(methyl methacrylate) Interfaces
    Chen, Xiaoming
    Zheng, Meng
    Park, Cheol
    Ke, Changhong
    [J]. SMALL, 2013, 9 (19) : 3345 - 3351
  • [10] Purification and characterization of single-wall carbon nanotubes
    Chiang, IW
    Brinson, BE
    Smalley, RE
    Margrave, JL
    Hauge, RH
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (06) : 1157 - 1161