Anisotropic damping of the magnetization dynamics in Ni, Co, and Fe

被引:82
作者
Gilmore, Keith [1 ]
Stiles, M. D. [1 ]
Seib, Jonas [2 ]
Steiauf, Daniel [2 ]
Faehnle, Manfred [2 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 17期
关键词
METALS; NICKEL;
D O I
10.1103/PhysRevB.81.174414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Gilbert parameter alpha describing the damping of magnetization dynamics is commonly taken to be an isotropic scalar. We argue that it is a tensor (alpha) double under bar that is anisotropic, leading to a dependence of the damping on both the instantaneous direction of the magnetization M(t) (orientational anisotropy) and on the direction of rotation of the magnetization (rotational anisotropy). For small-angle precession of M around a prescribed axis in the crystal, the rotational anisotropy of Ni, Co, and Fe is calculated as a function of the electronic scattering rate. For circular precession, the rotational anisotropy of M is averaged out and the damping is determined by an effective damping scalar alpha(eff) which depends on the axis of rotation. The quantity alpha(eff) of Ni, Co, and Fe is calculated for various crystallographic orientations. All calculations are performed by the ab initio density-functional electron theory within the framework of the torque-correlation model. The intraband contribution of this model (breathing Fermi-surface contribution) maintains both orientational and rotational anisotropy for all scattering rates. In contrast, the interband contribution (bubbling Fermi-surface contribution) exhibits these anisotropies only at small scattering rates (tau(-1)) and becomes increasingly isotropic (both orientationally and rotationally) as tau(-1) increases. Because the interband contribution dominates at high tau(-1), each material should exhibit isotropic damping at sufficiently high tau(-1) (i.e., sufficiently high temperatures).
引用
收藏
页数:6
相关论文
共 34 条
[1]  
[Anonymous], 2007, HDB MAGNETISM ADV MA
[2]   Current controlled random-access memory based on magnetic vortex handedness [J].
Bohlens, Stellan ;
Krueger, Benjamin ;
Drews, Andre ;
Bolte, Markus ;
Meier, Guido ;
Pfannkuche, Daniela .
APPLIED PHYSICS LETTERS, 2008, 93 (14)
[3]   Scattering theory of Gilbert damping [J].
Brataas, Arne ;
Tserkovnyak, Yaroslav ;
Bauer, Gerrit E. W. .
PHYSICAL REVIEW LETTERS, 2008, 101 (03)
[4]   Exploring dynamical magnetism with time-dependent density-functional theory: From spin fluctuations to Gilbert damping [J].
Capelle, K ;
Gyorffy, BL .
EUROPHYSICS LETTERS, 2003, 61 (03) :354-360
[5]   Polarization Selective Magnetic Vortex Dynamics and Core Reversal in Rotating Magnetic Fields [J].
Curcic, Michael ;
Van Waeyenberge, Bartel ;
Vansteenkiste, Arne ;
Weigand, Markus ;
Sackmann, Vitalij ;
Stoll, Hermann ;
Faehnle, Manfred ;
Tyliszczak, Tolek ;
Woltersdorf, Georg ;
Back, Christian H. ;
Schuetz, Gisela .
PHYSICAL REVIEW LETTERS, 2008, 101 (19)
[6]   The Gilbert equation revisited:: anisotropic and nonlocal damping of magnetization dynamics [J].
Faehnle, M. ;
Steiauf, D. ;
Seib, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (16)
[7]  
Fahnle M., 2007, HDB MAGNETISM ADV MA, V1, P282
[8]   Gilbert damping in conducting ferromagnets. II. Model tests of the torque-correlation formula [J].
Garate, Ion ;
MacDonald, Allan .
PHYSICAL REVIEW B, 2009, 79 (06)
[9]   Gilbert damping in conducting ferromagnets. I. Kohn-Sham theory and atomic-scale inhomogeneity [J].
Garate, Ion ;
MacDonald, Allan .
PHYSICAL REVIEW B, 2009, 79 (06)
[10]  
Gilbert T. L., 1956, Ph.D. thesis