Nonlinear Riemann-Hilbert problems with Lipschitz-continuous boundary data: doubly connected domains

被引:6
作者
Efendiev, MA
Wendland, WL
机构
[1] Univ Stuttgart, Inst Anal Dynam & Modellierung, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Anorgan Anal & Numer Simulat, D-70569 Stuttgart, Germany
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2003年 / 459卷 / 2032期
关键词
topological degree; Riemann-Hilbert problem; Lipshitz-continuous boundary data;
D O I
10.1098/rspa.2002.0994
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here we investigate nonlinear Riemann-Hilbert problems for hyperbolic functions w(z) = u(z) + iv(z) in a given doubly connected domain G(2), where the nonlinear boundary data, i.e. the family of curves, are implicitly given by {F(zeta, u, v) = 0 for zeta is an element of partial derivativeG(2)} in the w-plane with a Lipshitz-continuous function F, and these curves for every zeta are non-closed but going to infinity. In order to prove the solvability of the nonlinear problem, we first reduce the problem to a system of nonlinear Cauchy-singular integral equations on the boundary partial derivativeG(2). Employing the topological degree of quasilinear Fredholm mappings together with approximation arguments (Montel's theorem) we prove the existence of at least one solution.
引用
收藏
页码:945 / 955
页数:11
相关论文
共 11 条
[1]  
[Anonymous], 1921, MATH ANN
[2]   Nonlinear Riemann-Hilbert problems for multiply connected domains [J].
Efendiev, MA ;
Wendland, WL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (01) :37-58
[3]   Nonlinear Riemann-Hilbert problems without transversality [J].
Efendiev, MA ;
Wendland, WL .
MATHEMATISCHE NACHRICHTEN, 1997, 183 :73-89
[4]  
EFENDIEV MA, 1984, IZV AKAD NAUK AZERB, V3, P9
[5]  
FITZPATRICK PM, 1986, P SYMP PURE MATH, V45, P425
[6]  
Gakhov F.D., 1966, Boundary Value Problems
[7]  
HILBERT D, 1905, ACT COMP REND C INT, P233
[8]  
KOPPELMAN W, 1961, J MATH MECH, V10, P247
[9]  
Snirel'man A. I., 1972, MATH USSR SB, V18, P373, DOI 10.1070/SM1972v018n03ABEH001825
[10]   Nonlinear Riemann-Hilbert problems with Lipschitz continuous boundary condition [J].
Wegert, E ;
Efendiev, MA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :793-800