Segmentation of MRI images to detect multiple sclerosis using non-parametric, non-uniform intensity normalization and support vector machine methods

被引:0
作者
Moghadasi, Mohammad [1 ]
Fazekas, Gabor [1 ]
机构
[1] Univ Debrecen, Dept Informat, Debrecen, Hungary
来源
INFOCOMMUNICATIONS JOURNAL | 2021年 / 13卷 / 01期
关键词
Brain MRI Image; Multiple Sclerosis; Non-Uniform Image; Light Intensity; N3; Method; MR Image Segmentation; Support Vector Machines (SVM); Machine Learning Techniques; K-Means; BIAS FIELD ESTIMATION; AUTOMATED SEGMENTATION; LESIONS; N3;
D O I
10.36244/ICJ.2021.1.8
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Multiple sclerosis (MS) is an inflammatory, chronic, persistent, and destructive disease of the central nervous system whose cause is not yet known but can most likely be the result of a series of unknown environmental factors reacting with sensitive genes. MRI is a method of neuroimaging studies that results in better image contrast in soft tissue. Due to the unknown cause of MS and the lack of definitive treatment, early diagnosis of this disease is important. MRI image segmentation is used to identify MS plaques. MRI images have an image error that is often called non-uniform light intensity. There are several ways to correct non-uniform images. One of these methods is Nonparametric Non-uniform intensity Normalization (N3). This method sharpens the histogram. The aim of this study is to reduce the effect of bias field on the MRI image using N3 algorithm and pixels of MRI images clustered by k-means algorithm. The dimensionality of the data is reduced by Principal Component Analysis (PCA) algorithm and then the segmentation is done by Support Vector Machine (SVM) algorithm. Results show that using the proposed system could diagnose multiple sclerosis with an average accuracy of 93.28%.
引用
收藏
页码:68 / 74
页数:7
相关论文
共 31 条
[1]   A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J].
Ahmed, MN ;
Yamany, SM ;
Mohamed, N ;
Farag, AA ;
Moriarty, T .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) :193-199
[2]  
Baranyi A, 2015, SALLAI COGNITIVE INF, P191, DOI [10.1007/978-3-319-19608-4, DOI 10.1007/978-3-319-19608-4]
[3]  
Bogaert J., 2012, CLIN CARDIAC MRI, DOI DOI 10.1007/978-3-642-23035-6
[4]   Intensity non-uniformity correction using N3 on 3-T scanners with mutichannel phased array coils [J].
Boyes, Richard G. ;
Gunter, Jeff L. ;
Frost, Chris ;
Janke, Andrew L. ;
Yeatman, Thomas ;
Hill, Derek L. G. ;
Bernstein, Matt A. ;
Thompson, Paul M. ;
Weiner, Michael W. ;
Schuff, Norbert ;
Alexander, Gene E. ;
Killiany, Ronald J. ;
DeCarli, Charles ;
Jack, Clifford R. ;
Fox, Nick C. .
NEUROIMAGE, 2008, 39 (04) :1752-1762
[5]   Design and construction of a realistic digital brain phantom [J].
Collins, DL ;
Zijdenbos, AP ;
Kollokian, V ;
Sled, JG ;
Kabani, NJ ;
Holmes, CJ ;
Evans, AC .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (03) :463-468
[6]   Relapses and progression of disability in multiple sclerosis. [J].
Confavreux, C ;
Vukusic, S ;
Moreau, T ;
Adeleine, P .
NEW ENGLAND JOURNAL OF MEDICINE, 2000, 343 (20) :1430-1438
[7]   The definition of stroke [J].
Coupland, Alexander P. ;
Thapar, Ankur ;
Qureshi, Mahim I. ;
Jenkins, Harri ;
Davies, Alun H. .
JOURNAL OF THE ROYAL SOCIETY OF MEDICINE, 2017, 110 (01) :9-12
[8]   Sprego: case study on the effectiveness of teaching spreadsheet management with schema construction [J].
Csapo, Gabor ;
Csernoch, Maria ;
Abari, Kalman .
EDUCATION AND INFORMATION TECHNOLOGIES, 2020, 25 (03) :1585-1605
[9]   Lung Morphology Assessment Using MRI: A Robust Ultra-short TR/TE 2D Steady State Free Precession Sequence Used in Cystic Fibrosis Patients [J].
Failo, Riccarda ;
Wielopolski, Piotr A. ;
Tiddens, Harm A. W. M. ;
Hop, Wim C. J. ;
Mucelli, Roberto Pozzi ;
Lequin, Maarten. H. .
MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (02) :299-306
[10]  
Grande-Barreto J, 2018, IEEE INT AUT MEET