Additive-Induced Synergies of Defect Passivation and Energetic Modification toward Highly Efficient Perovskite Solar Cells

被引:51
|
作者
Xiong, Shaobing [1 ]
Hou, Zhangyu [1 ]
Dong, Wei [2 ]
Li, Danqin [1 ]
Yang, Jianming [1 ]
Bai, Ruirong [3 ]
Wu, Yuning [3 ]
Li, Dong [4 ]
Wu, Hongbo [5 ]
Ma, Zaifei [5 ]
Xu, Jianhua [4 ]
Liu, Xianjie [6 ]
Bao, Qinye [1 ,7 ]
机构
[1] East China Normal Univ, Sch Phys & Elect Sci, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Magnet Resonance, Shanghai 200241, Peoples R China
[3] East China Normal Univ, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[4] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200241, Peoples R China
[5] Donghua Univ, Ctr Adv Low Dimens Mat, Shanghai 201620, Peoples R China
[6] Linkoping Univ, ITN, Lab Organ Elect, S-60174 Norrkoping, Sweden
[7] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
美国国家科学基金会;
关键词
defect passivation; energetics; nonradiative recombination; perovskite solar cells; synergy; RECOMBINATION; TRIHALIDE; EMERGENCE; LENGTHS;
D O I
10.1002/aenm.202101394
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Defect passivation via additive and energetic modification via interface engineering are two effective strategies for achieving high-performance perovskite solar cells (PSCs). Here, the synergies of pentafluorophenyl acrylate when used as additive, in which it not only passivates surface defect states but also simultaneously modifies the energetics at the perovskite/Spiro-OMeTAD interface to promote charge transport, are shown. The additive-induced synergy effect significantly suppresses both defect-assisted recombination and interface carrier recombination, resulting in a device efficiency of 22.42% and an open-circuit voltage of 1.193 V with excellent device stability. The two photovoltaic parameters are among the highest values for polycrystalline CsFormamidinium/Methylammonium (FAMA)/FAMA based n-i-p structural PSCs using low-cost silver electrodes reported to date. The findings provide a promising approach by choosing the dual functional additive to enhance efficiency and stability of PSCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Inorganic material passivation of defects toward efficient perovskite solar cells
    Qi, Wenjing
    Zhou, Xin
    Li, Jiale
    Cheng, Jian
    Li, Yuelong
    Ko, Min Jae
    Zhao, Ying
    Zhang, Xiaodan
    SCIENCE BULLETIN, 2020, 65 (23) : 2022 - 2032
  • [42] Defect and Contact Passivation for Perovskite Solar Cells
    Aydin, Erkan
    De Bastiani, Michele
    De Wolf, Stefaan
    ADVANCED MATERIALS, 2019, 31 (25)
  • [43] Surface-modification-induced synergies of crystal growth and defect passivation toward CsPbI2Br solar cells with efficiency exceeding 17%
    Sun, Jiayi
    Jin, Yingzhi
    Liu, Qiuju
    Qiu, Fazheng
    CHEMICAL ENGINEERING JOURNAL, 2023, 457
  • [44] Surface passivation by multifunctional carbon dots toward highly efficient and stable inverted perovskite solar cells
    Cao, Qi
    Zhang, Yixin
    Pu, Xingyu
    Zhao, Junsong
    Wang, Tong
    Zhang, Kui
    Chen, Hui
    He, Xilai
    Yang, Jiabao
    Zhang, Cheng
    Li, Xuanhua
    JOURNAL OF ENERGY CHEMISTRY, 2023, 86 : 9 - 15
  • [45] Highly Efficient Perovskite Solar Cells Enabled by Multiple Ligand Passivation
    Wu, Zhifang
    Jiang, Maowei
    Liu, Zonghao
    Jamshaid, Afshan
    Ono, Luis K.
    Qi, Yabing
    ADVANCED ENERGY MATERIALS, 2020, 10 (10)
  • [46] Surface passivation of perovskite with organic hole transport materials for highly efficient and stable perovskite solar cells
    Fu Y.
    Li Y.
    Xing G.
    Cao D.
    Materials Today Advances, 2022, 16
  • [47] Surface passivation of perovskite with organic hole transport materials for highly efficient and stable perovskite solar cells
    Fu, Yajie
    Li, Yang
    Xing, Guichuan
    Cao, Derong
    MATERIALS TODAY ADVANCES, 2022, 16
  • [48] Vacancies substitution induced interfacial dipole formation and defect passivation for highly stable perovskite solar cells
    Liu, Detao
    Zheng, Hualin
    Wang, Yafei
    Ji, Long
    Chen, Hao
    Yang, Wenyao
    Chen, Li
    Chen, Zhi
    Li, Shibin
    CHEMICAL ENGINEERING JOURNAL, 2020, 396
  • [49] Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donor-π-Acceptor Molecules
    Wu, Tianhao
    Wang, Yanbo
    Li, Xing
    Wu, Yongzhen
    Meng, Xiangyue
    Cui, Danyu
    Yang, Xudong
    Han, Liyuan
    ADVANCED ENERGY MATERIALS, 2019, 9 (17)
  • [50] Additive engineering enabled non-radiative defect passivation with improved moisture-resistance in efficient and stable perovskite solar cells
    Azam, Muhammad
    Ke, Zhicheng
    Luo, Junsheng
    Wan, Zhongquan
    Hassan, Ali
    Jia, Chunyang
    CHEMICAL ENGINEERING JOURNAL, 2024, 483