Cellular automata and Lyapunov exponents

被引:38
作者
Tisseur, P [1 ]
机构
[1] Inst Math Luminy, UPR 9016 163, F-13288 Marseille 9, France
关键词
D O I
10.1088/0951-7715/13/5/308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first definition of Lyapunov exponents (depending on a probability measure) for a one-dimensional cellular automaton was introduced by Shereshevsky in 1991. The existence of an almost everywhere constant value for each of the two exponents (left and right), requires particular conditions for the measure. Shereshevsky establishes an inequality involving these two constants and the metric entropies of both the shift and the cellular automaton. In this paper we first prove that Shereshevsky's two exponents exist for a more suitable class of measures, then, keeping the same conditions, we define new exponents, called average Lyapunov exponents which are smaller than or equal to the former. We obtain two inequalities: the first one is analogous to Shereshevsky's but concerns the average exponents; the second is the Shereshevsky inequality but with more suitable assumptions. These results are illustrated by two non-trivial examples, both proving that average exponents provide a better bound for the entropy, and one showing that the inequalities are strict in general. AMS classification scheme numbers: 37B15, 37A35, 37A25.
引用
收藏
页码:1547 / 1560
页数:14
相关论文
共 50 条
[21]   ISING CELLULAR AUTOMATA - UNIVERSALITY AND CRITICAL EXPONENTS [J].
JAN, N .
JOURNAL DE PHYSIQUE, 1990, 51 (03) :201-204
[22]   Lyapunov exponents, dual Lyapunov exponents, and multifractal analysis [J].
Fan, AH ;
Jiang, YP .
CHAOS, 1999, 9 (04) :849-853
[23]   Towards the Full Lyapunov Spectrum of Elementary Cellular Automata [J].
Baetens, J. M. ;
De Baets, B. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
[24]   Lyapunov Exponents [J].
Weiss, Christian .
TWISTED TEICHMULLER CURVES, 2014, 2104 :127-133
[25]   Damage spreading and the Lyapunov spectrum of cellular automata and Boolean networks [J].
Vispoel, Milan ;
Daly, Aisling J. ;
Baetens, Jan M. .
CHAOS SOLITONS & FRACTALS, 2024, 184
[26]   Lyapunov Profiles of Three-State Totalistic Cellular Automata [J].
Vispoel, Milan ;
Daly, Aisling J. ;
Baetens, Jan M. .
CELLULAR AUTOMATA (ACRI 2022), 2022, 13402 :106-115
[27]   LYAPUNOV EXPONENTS - A SURVEY [J].
ARNOLD, L ;
WIHSTUTZ, V .
LECTURE NOTES IN MATHEMATICS, 1986, 1186 :1-26
[28]   STABILITY OF LYAPUNOV EXPONENTS [J].
LEDRAPPIER, F ;
YOUNG, LS .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 :469-484
[29]   On quantum Lyapunov exponents [J].
Majewski, Wladyslaw A. ;
Marciniak, Marcin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31) :L523-L528
[30]   Differentiability of Lyapunov Exponents [J].
Ferraiol, Thiago F. ;
San Martin, Luiz A. B. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (02) :289-310