Cellular automata and Lyapunov exponents

被引:38
|
作者
Tisseur, P [1 ]
机构
[1] Inst Math Luminy, UPR 9016 163, F-13288 Marseille 9, France
关键词
D O I
10.1088/0951-7715/13/5/308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first definition of Lyapunov exponents (depending on a probability measure) for a one-dimensional cellular automaton was introduced by Shereshevsky in 1991. The existence of an almost everywhere constant value for each of the two exponents (left and right), requires particular conditions for the measure. Shereshevsky establishes an inequality involving these two constants and the metric entropies of both the shift and the cellular automaton. In this paper we first prove that Shereshevsky's two exponents exist for a more suitable class of measures, then, keeping the same conditions, we define new exponents, called average Lyapunov exponents which are smaller than or equal to the former. We obtain two inequalities: the first one is analogous to Shereshevsky's but concerns the average exponents; the second is the Shereshevsky inequality but with more suitable assumptions. These results are illustrated by two non-trivial examples, both proving that average exponents provide a better bound for the entropy, and one showing that the inequalities are strict in general. AMS classification scheme numbers: 37B15, 37A35, 37A25.
引用
收藏
页码:1547 / 1560
页数:14
相关论文
共 50 条
  • [1] On Lyapunov Exponents for Cellular Automata
    Courbage, Maurice
    Kaminski, Brunon
    JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (02) : 159 - 168
  • [2] Lyapunov exponents and synchronization of cellular automata
    Bagnoli, F
    Rechtman, R
    COMPLEX SYSTEMS-BOOK, 2001, 6 : 69 - 103
  • [3] Synchronization and maximum Lyapunov exponents of cellular automata
    Bagnoli, Franco
    Rechtman, Raul
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-A):
  • [4] Synchronization and maximum Lyapunov exponents of cellular automata
    Bagnoli, Franco
    Rechtman, Raul
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2 PART A):
  • [5] The Lyapunov Exponents of Reversible Cellular Automata Are Uncomputable
    Kopra, Johan
    UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, UCNC 2019, 2019, 11493 : 178 - 190
  • [6] DAMAGE SPREADING AND LYAPUNOV EXPONENTS IN CELLULAR AUTOMATA
    BAGNOLI, F
    RECHTMAN, R
    RUFFO, S
    PHYSICS LETTERS A, 1992, 172 (1-2) : 34 - 38
  • [7] Synchronization and maximum Lyapunov exponents of cellular automata
    Bagnoli, F
    Rechtman, R
    PHYSICAL REVIEW E, 1999, 59 (02): : R1307 - R1310
  • [8] On computing the Lyapunov exponents of reversible cellular automata
    Johan Kopra
    Natural Computing, 2021, 20 : 273 - 286
  • [9] On computing the Lyapunov exponents of reversible cellular automata
    Kopra, Johan
    NATURAL COMPUTING, 2021, 20 (02) : 273 - 286
  • [10] Lyapunov exponents versus expansivity and sensitivity in cellular automata
    Finelli, M
    Manzini, G
    Margara, L
    JOURNAL OF COMPLEXITY, 1998, 14 (02) : 210 - 233