共 50 条
Self-consistent equations governing the dynamics of non-equilibrium binary colloidal systems
被引:3
作者:
Zhao, Teng
[1
,2
]
Qiao, Chongzhi
[1
,2
]
Xu, Xiaofei
[1
,2
]
Zhao, Shuangliang
[1
,2
,3
,4
]
机构:
[1] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Chem Engn, Shanghai 200237, Peoples R China
[3] Guangxi Univ, Guangxi Key Lab Petrochem Resource Proc & Proc In, Nanning 530004, Peoples R China
[4] Guangxi Univ, Sch Chem & Chem Engn, Nanning 530004, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Non-equilibrium binary colloidal system;
Kramers equation;
Maximum path information entropy;
principle;
Dynamical governing equations;
Self-consistent;
DENSITY-FUNCTIONAL THEORY;
NAVIER-STOKES EQUATIONS;
MAXIMUM-ENTROPY PRODUCTION;
HEAT-TRANSFER;
THERMAL-CONDUCTIVITY;
BROWNIAN PARTICLES;
NUMERICAL-SOLUTION;
FLOW;
LAMINAR;
STATES;
D O I:
10.1016/j.ces.2021.116623
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
Most of the existing non-equilibrium theories are developed based on local-equilibrium assumptions and therefore encounter difficulty in addressing dynamical processes far-from-equilibrium. Herein, we present a set of dynamical equations to describe the dynamics of non-equilibrium binary colloidal system, which is derived by combining the Kramers equation with the maximum path information entropy principle. These equations, involving the local density, local momentum and local kinetic energy, are coupled with each other and eventually depend on the two-body probability distribution function, whose least biased prediction is given by applying the maximum path information entropy principle. We show that the proposed dynamical governing equations are self-consistent, and can recover to the existing relevant theories upon various local equilibrium assumptions. The simplified forms of these equations are also discussed for several types of systems with geometrical symmetries. This work provides a theoretical framework at molecular level for investigating dynamical behaviors of multi-component systems far from-equilibrium. CO 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文