Robust Assessment of Clustering Methods for Fast Radio Transient Candidates

被引:5
作者
Aggarwal, Kshitij [1 ,2 ]
Burke-Spolaor, Sarah [1 ,2 ,3 ]
Law, Casey J. [4 ]
Bower, Geoffrey C. [5 ]
Butler, Bryan J. [6 ]
Demorest, Paul B. [6 ]
Lazio, T. Joseph W. [7 ]
Linford, Justin [6 ]
Sydnor, Jessica [1 ,2 ]
Anna-Thomas, Reshma [1 ,2 ]
机构
[1] West Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26506 USA
[2] West Virginia Univ, Ctr Gravitat Waves & Cosmol, Chestnut Ridge Res Bldg, Morgantown, WV 26506 USA
[3] CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada
[4] CALTECH, Cahill Ctr Astron & Astrophys, MC 249-17, Pasadena, CA 91125 USA
[5] Acad Sinica Inst Astron & Astrophys, 645 N Aohoku Pl, Hilo, HI 96720 USA
[6] Natl Radio Astron Observ, Socorro, NM 87801 USA
[7] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 67-201, Pasadena, CA 91109 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
ARRAY; BURST; SEARCH;
D O I
10.3847/1538-4357/abf92b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Fast radio transient search algorithms identify signals of interest by iterating and applying a threshold on a set of matched filters. These filters are defined by properties of the transient such as time and dispersion. A real transient can trigger hundreds of search trials, each of which has to be post-processed for visualization and classification tasks. In this paper, we have explored a range of unsupervised clustering algorithms to cluster these redundant candidate detections. We demonstrate this for Realfast, the commensal fast-transient search system at the Karl G. Jansky Very Large Array. We use four features for clustering: sky position (l, m), time, and dispersion measure (DM). We develop a custom performance metric that makes sure that the candidates are clustered into a small number of pure clusters, i.e., clusters with either astrophysical or noise candidates. We then use this performance metric to compare eight different clustering algorithms. We show that using sky location along with DM/time improves clustering performance by similar to 10% as compared to the traditional DM/time-based clustering. Therefore, positional information should be used during clustering if it can be made available. We conduct several tests to compare the performance and generalizability of clustering algorithms to other transient data sets and propose a strategy that can be used to choose an algorithm. Our performance metric and clustering strategy can be easily extended to different single-pulse search pipelines and other astronomy and non-astronomy-based applications.
引用
收藏
页数:13
相关论文
共 40 条
  • [1] FETCH: A deep-learning based classifier for fast transient classification
    Agarwal, Devansh
    Aggarwal, Kshitij
    Burke-Spolaor, Sarah
    Lorimer, Duncan R.
    Garver-Daniels, Nathaniel
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (02) : 1661 - 1674
  • [2] Aggarwal K., 2020, Res. Notes Am. Astron. Soc, V4, P94, DOI [10.3847/2515-5172/ab9f33, DOI 10.3847/2515-5172/AB9F33]
  • [3] Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49
  • [4] [Anonymous], 2004, HDB PULSAR ASTRONOMY
  • [5] A single fast radio burst localized to a massive galaxy at cosmological distance
    Bannister, K. W.
    Deller, A. T.
    Phillips, C.
    Macquart, J. -P.
    Prochaska, J. X.
    Tejos, N.
    Ryder, S. D.
    Sadler, E. M.
    Shannon, R. M.
    Simha, S.
    Day, C. K.
    McQuinn, M.
    North-Hickey, F. O.
    Bhandari, S.
    Arcus, W. R.
    Bennert, V. N.
    Burchett, J.
    Bouwhuis, M.
    Dodson, R.
    Ekers, R. D.
    Farah, W.
    Flynn, C.
    James, C. W.
    Kerr, M.
    Lenc, E.
    Mahony, E. K.
    O'Meara, J.
    Oslowski, S.
    Qiu, H.
    Treu, T.
    Bateman, T. J.
    Bock, D. C. -J.
    Bolton, R. J.
    Brown, A.
    Bunton, J. D.
    Chippendale, A. P.
    Cooray, F. R.
    Cornwell, T.
    Gupta, N.
    Hayman, D. B.
    Kesteven, M.
    Koribalski, B. S.
    MacLeod, A.
    McClure-Griffiths, N. M.
    Neuhold, S.
    Norris, R. P.
    Pilawa, M. A.
    Qiao, R. -Y.
    Reynolds, J.
    Roxby, D. N.
    [J]. SCIENCE, 2019, 365 (6453) : 565 - 570
  • [6] Barsdell B. R., 2012, PhD thesis
  • [7] Bergstra J, 2012, J MACH LEARN RES, V13, P281
  • [8] Breiman L., 2001, MACH LEARN
  • [9] Buitinck L., 2013, ECML PKDD WORKSHOP L, P108
  • [10] Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection
    Campello, Ricardo J. G. B.
    Moulavi, Davoud
    Zimek, Arthur
    Sander, Joerg
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2015, 10 (01)