ORIGIN AND EFFECT OF BACK STRESS ON CYCLIC CREEP DEFORMATION OF 316H STAINLESS STEEL

被引:0
|
作者
Al Mamun, Abdullah [1 ]
Moat, Richard James [1 ]
Bouchard, P. John [1 ]
机构
[1] Open Univ, Walton Hall, Milton Keynes MK7 6AA, Bucks, England
关键词
DEFORMED METAL CRYSTALS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Components in power generation plants operate at high temperature and often go through complex cyclic loading sequence during its operations. Back stress' is generated during such cyclic loading due to inhomogeneity in deformation at micro scale and significantly affects the overall creep lifetime of the materials of these components. Using a time of flight neutron diffraction facility, we studied the origin of back stress and its effects on creep deformation rate of AISI type 316H austenitic steel during cyclic creep at 650 degrees C. The result shows, during high temperature cyclic loading of this material for any given level of stress, the magnitude of back stress vary significantly depending on the point in the cycle being observed. The effective back stress levels associated with dwells introduced at different points in the cycle shows good co-relation with the measured macroscopic secondary creep deformation rate. Moreover, a simplified approach using modified power law creep equation is proposed to quantify back stress from a known creep deformation rate.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] EFFECT OF PLASTICITY ON CREEP DEFORMATION IN TYPE 316H STAINLESS STEEL
    Al Mamun, Abdullah
    Simpson, Chris
    Erinosho, Tomiwa
    Agius, Dylan
    Reinhard, Christina
    Mostafavi, Mahmoud
    Knowles, David
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2019, VOL 6A, 2019,
  • [2] Creep modelling of 316H stainless steel over a wide range of stress
    Esposito, L.
    Bonora, N.
    De Vita, G.
    21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21), 2016, 2 : 927 - 933
  • [3] Creep crack growth simulations in 316H stainless steel
    Yatomi, Masataka
    Davies, Catrin M.
    Nikbin, Kamran M.
    ENGINEERING FRACTURE MECHANICS, 2008, 75 (18) : 5140 - 5150
  • [4] An Investigation into Creep Cavity Development in 316H Stainless Steel
    Jazaeri, Hedieh
    Bouchard, P. John
    Hutchings, Michael T.
    Spindler, Mike W.
    Mamun, Abdullah A.
    Heenan, Richard K.
    METALS, 2019, 9 (03):
  • [5] Effect of microstructure evolution on the creep properties of a polycrystalline 316H austenitic stainless steel
    Hu, Jianan
    Green, Graham
    Hogg, Simon
    Higginson, Rebecca
    Cocks, Alan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 772 (772):
  • [6] Creep performance of carburized 316H stainless steel at 550 °C
    Eaton-Mckay, J.
    Yan, K.
    Callaghan, M. D.
    Jimenez-Melero, E.
    JOURNAL OF NUCLEAR MATERIALS, 2022, 558
  • [7] Effect of thermal ageing on creep and oxidation behaviour of Type 316H stainless steel
    Chen, B.
    Hu, J. N.
    Flewitt, P. E. J.
    Cocks, A. C. F.
    Ainsworth, R. A.
    Smith, D. J.
    Dean, D. W.
    Scenini, F.
    MATERIALS AT HIGH TEMPERATURES, 2015, 32 (06) : 592 - 606
  • [8] The influence of constraint on creep crack growth in 316H stainless steel
    Bettinson, A
    Nikbin, K
    O'Dowd, NP
    Webster, GA
    STRUCTURAL INTEGRITY IN THE 21ST CENTURY: THE LIFETIME OF PLANT, STRUCTURES AND COMPONENTS: EVALUATION, DESIGN, EXTENSION AND MANAGEMENT, 2000, : 149 - 156
  • [9] Constitutive equations that describe creep stress relaxation for 316H stainless steel at 550°C
    Chen, Bo
    Smith, David J.
    Flewitt, Peter E. J.
    Spindler, Michael W.
    MATERIALS AT HIGH TEMPERATURES, 2011, 28 (03) : 155 - 164
  • [10] The effect of prior cyclic loading variables on the creep behaviour of ex-service Type 316H stainless steel
    Joseph, T. D.
    McLennon, D.
    Spindler, M. W.
    Truman, C. E.
    Smith, D. J.
    MATERIALS AT HIGH TEMPERATURES, 2013, 30 (02) : 156 - 160