A Poisson Multi-Bernoulli Mixture Filter for Coexisting Point and Extended Targets

被引:37
|
作者
Garcia-Fernandez, Angel [1 ,2 ]
Williams, Jason [3 ]
Svensson, Lennart [4 ]
Xia, Yuxuan [4 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
[2] Univ Antonio de Nebrija, ARIES Res Ctr, Madrid 28015, Spain
[3] CSIRO, Robot & Autonomous Syst Grp, Kenmore, Qld 4069, Australia
[4] Chalmers Univ Technol, Dept Elect Engn, SE-41296 Gothenburg, Sweden
关键词
Time measurement; Density measurement; Standards; Computational modeling; Probabilistic logic; Weight measurement; Clutter; Multiple target filtering; point targets; extended targets; TRACKING; OBJECT; ASSOCIATION; DERIVATION; PHD;
D O I
10.1109/TSP.2021.3072006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a Poisson multi-Bernoulli mixture (PMBM) filter for coexisting point and extended targets, i.e., for scenarios where there may be simultaneous point and extended targets. The PMBM filter provides a recursion to compute the multi-target filtering posterior based on probabilistic information on data associations, and single-target predictions and updates. In this paper, we first derive the PMBM filter update for a generalised measurement model, which can include measurements originated from point and extended targets. Second, we propose a single-target space that accommodates both point and extended targets and derive the filtering recursion that propagates Gaussian densities for point targets and gamma Gaussian inverse Wishart densities for extended targets. As a computationally efficient approximation of the PMBM filter, we also develop a Poisson multi-Bernoulli (PMB) filter for coexisting point and extended targets. The resulting filters are analysed via numerical simulations.
引用
收藏
页码:2600 / 2610
页数:11
相关论文
共 50 条
  • [41] Extended Target Fast Labeled Multi-Bernoulli Filter
    Cheng, Xuan
    Ji, Hongbing
    Zhang, Yongquan
    RADIOENGINEERING, 2023, 32 (03) : 356 - 370
  • [42] Best fit of mixture for multi-sensor poisson multi-Bernoulli mixture filtering
    Li, Tiancheng
    Xin, Yue
    Liu, Zhunga
    Da, Kai
    SIGNAL PROCESSING, 2023, 202
  • [43] Space Debris Tracking with the Poisson Labeled Multi-Bernoulli Filter
    Cament, Leonardo
    Adams, Martin
    Barrios, Pablo
    SENSORS, 2021, 21 (11)
  • [44] The δ-Generalized Multi-Bernoulli Poisson Filter in a Multi-Sensor Application
    Cament, Leonardo
    Adams, Martin
    Correa, Javier
    Perez, Claudio
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2017, : 32 - 37
  • [45] Trajectory Poisson Multi-Bernoulli Filter for Group Target Tracking
    Wu, Qinchen
    Sun, Jinping
    Yang, Bin
    2024 27TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, FUSION 2024, 2024,
  • [46] Gamma Gaussian inverse-Wishart Poisson multi-Bernoulli Filter for Extended Target Tracking
    Granstrom, Karl
    Fatemi, Maryam
    Svensson, Lennart
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 893 - 900
  • [47] Robust Poisson Multi-Bernoulli Filter With Unknown Clutter Rate
    Si, Weijian
    Zhu, Hongfan
    Qu, Zhiyu
    IEEE ACCESS, 2019, 7 : 117871 - 117882
  • [48] A Fast Poisson Multi-Bernoulli Filter for Multiple Target Tracking
    Kusumoto, Tetsuya
    Yoneda, Masaki
    Nishi, Takafumi
    Ogawa, Takashi
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [49] Matrix Separation and Poisson Multi-Bernoulli Mixture Filtering for Extended Multi-Target Tracking with Infrared Images
    Su, Jian
    Zhou, Haiyin
    Yu, Qi
    Zhu, Jubo
    Liu, Jiying
    ELECTRONICS, 2024, 13 (13)
  • [50] Non-Ellipsoidal Infrared Group/Extended Target Tracking Based on Poisson Multi-Bernoulli Mixture Filter and B-Spline
    Wang, Yi
    Chen, Xin
    Gong, Chao
    Rao, Peng
    REMOTE SENSING, 2023, 15 (03)