A Poisson Multi-Bernoulli Mixture Filter for Coexisting Point and Extended Targets

被引:37
|
作者
Garcia-Fernandez, Angel [1 ,2 ]
Williams, Jason [3 ]
Svensson, Lennart [4 ]
Xia, Yuxuan [4 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
[2] Univ Antonio de Nebrija, ARIES Res Ctr, Madrid 28015, Spain
[3] CSIRO, Robot & Autonomous Syst Grp, Kenmore, Qld 4069, Australia
[4] Chalmers Univ Technol, Dept Elect Engn, SE-41296 Gothenburg, Sweden
关键词
Time measurement; Density measurement; Standards; Computational modeling; Probabilistic logic; Weight measurement; Clutter; Multiple target filtering; point targets; extended targets; TRACKING; OBJECT; ASSOCIATION; DERIVATION; PHD;
D O I
10.1109/TSP.2021.3072006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a Poisson multi-Bernoulli mixture (PMBM) filter for coexisting point and extended targets, i.e., for scenarios where there may be simultaneous point and extended targets. The PMBM filter provides a recursion to compute the multi-target filtering posterior based on probabilistic information on data associations, and single-target predictions and updates. In this paper, we first derive the PMBM filter update for a generalised measurement model, which can include measurements originated from point and extended targets. Second, we propose a single-target space that accommodates both point and extended targets and derive the filtering recursion that propagates Gaussian densities for point targets and gamma Gaussian inverse Wishart densities for extended targets. As a computationally efficient approximation of the PMBM filter, we also develop a Poisson multi-Bernoulli (PMB) filter for coexisting point and extended targets. The resulting filters are analysed via numerical simulations.
引用
收藏
页码:2600 / 2610
页数:11
相关论文
共 50 条
  • [21] A Poisson multi-Bernoulli filter with target spawning
    Su, Zhenzhen
    Ji, Hongbing
    Zhang, Yongquan
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [22] Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering
    Granstrom, Karl
    Fatemi, Maryam
    Svensson, Lennart
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (01) : 208 - 225
  • [23] Sensor Management for Search and Track Using the Poisson Multi-Bernoulli Mixture Filter
    Bostrom-Rost, Per
    Axehill, Daniel
    Hendeby, Gustaf
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (05) : 2771 - 2783
  • [24] Trajectory Poisson Multi-Bernoulli Mixture Filter for Traffic Monitoring Using a Drone
    Garcia-Fernandez, Angel F.
    Xiao, Jimin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (01) : 402 - 413
  • [25] Extended target Poisson multi-Bernoulli mixture trackers based on sets of trajectories
    Xia, Yuxuan
    Granstrom, Karl
    Svensson, Lennart
    Garcia-Fernandez, Angel F.
    Williams, Jason L.
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [26] RCS Information Aided Poisson Multi-Bernoulli Mixture Filter in Clutter Background
    Bai, Mengdi
    Zhang, Qilei
    Yu, Ruofeng
    Zhang, Yongsheng
    Sun, Bin
    IEEE SENSORS JOURNAL, 2024, 24 (04) : 5039 - 5052
  • [27] An Implementation of the Poisson Multi-Bernoulli Mixture Trajectory Filter via Dual Decomposition
    Xia, Yuxuan
    Granstrom, Karl
    Svensson, Lennart
    Garcia-Fernandez, Angel F.
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 2453 - 2460
  • [28] Gaussian implementation of the multi-Bernoulli mixture filter
    Garcia-Fernandez, Angel E.
    Xia, Yuxuan
    Granstrom, Karl
    Svensson, Lennart
    Williamst, Jason L.
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [29] Robust Poisson Multi-Bernoulli Mixture Filter With Inaccurate Process and Measurement Noise Covariances
    Li, Wenjuan
    Gu, Hong
    Su, Weimin
    IEEE ACCESS, 2020, 8 : 52209 - 52220
  • [30] A Poisson multi-Bernoulli mixture filter with spawning based on Kullback–Leibler divergence minimization
    Zhenzhen SU
    Hongbing JI
    Yongquan ZHANG
    Chinese Journal of Aeronautics , 2021, (11) : 154 - 168