A Poisson Multi-Bernoulli Mixture Filter for Coexisting Point and Extended Targets

被引:37
|
作者
Garcia-Fernandez, Angel [1 ,2 ]
Williams, Jason [3 ]
Svensson, Lennart [4 ]
Xia, Yuxuan [4 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
[2] Univ Antonio de Nebrija, ARIES Res Ctr, Madrid 28015, Spain
[3] CSIRO, Robot & Autonomous Syst Grp, Kenmore, Qld 4069, Australia
[4] Chalmers Univ Technol, Dept Elect Engn, SE-41296 Gothenburg, Sweden
关键词
Time measurement; Density measurement; Standards; Computational modeling; Probabilistic logic; Weight measurement; Clutter; Multiple target filtering; point targets; extended targets; TRACKING; OBJECT; ASSOCIATION; DERIVATION; PHD;
D O I
10.1109/TSP.2021.3072006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a Poisson multi-Bernoulli mixture (PMBM) filter for coexisting point and extended targets, i.e., for scenarios where there may be simultaneous point and extended targets. The PMBM filter provides a recursion to compute the multi-target filtering posterior based on probabilistic information on data associations, and single-target predictions and updates. In this paper, we first derive the PMBM filter update for a generalised measurement model, which can include measurements originated from point and extended targets. Second, we propose a single-target space that accommodates both point and extended targets and derive the filtering recursion that propagates Gaussian densities for point targets and gamma Gaussian inverse Wishart densities for extended targets. As a computationally efficient approximation of the PMBM filter, we also develop a Poisson multi-Bernoulli (PMB) filter for coexisting point and extended targets. The resulting filters are analysed via numerical simulations.
引用
收藏
页码:2600 / 2610
页数:11
相关论文
共 50 条
  • [1] A Poisson Multi-Bernoulli Mixture Filter for Tracking Coexisting Point/Extended Targets by Multiple Sensors' Fusion
    Wu, Xiongjun
    Zhao, Yongwu
    Qiang, Jingjing
    Ma, Liang
    Wu, Wei
    Liu, Quanzhan
    Du, Longhai
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 189 - 194
  • [2] Bernoulli merging for the Poisson multi-Bernoulli mixture filter
    Fontana, Marco
    Garcia-Fernandez, Angel F.
    Maskell, Simon
    PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 262 - 269
  • [3] Robust Poisson multi-Bernoulli mixture filter using adaptive birth distributions for extended targets
    Wu, Sunyong
    Zhou, Yusong
    Xie, Yun
    Xue, Qiutiao
    DIGITAL SIGNAL PROCESSING, 2022, 126
  • [4] Multiple Model Poisson Multi-Bernoulli Mixture Filter for Maneuvering Targets
    Li, Guchong
    Kong, Lingjiang
    Yi, Wei
    Li, Xiaolong
    IEEE SENSORS JOURNAL, 2021, 21 (03) : 3143 - 3154
  • [5] Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter
    Du, Haocui
    Xie, Weixin
    SENSORS, 2020, 20 (18) : 1 - 15
  • [6] Poisson multi-bernoulli mixture filter for enhanced tracking of spawning targets
    Mirsadraei, Iman
    Dehghan, Seyed Mohammad-Mahdi
    Mofrad, Reza Fatemi
    DIGITAL SIGNAL PROCESSING, 2025, 162
  • [7] A Poisson multi-Bernoulli mixture filter for tracking multiple resolvable group targets
    Zhou, Yusong
    Zhao, Jin
    Wu, Sunyong
    Liu, Chang
    DIGITAL SIGNAL PROCESSING, 2024, 144
  • [8] The Multiple Model Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking
    Xie, Xingxiang
    Wang, Yang
    Guo, Junqi
    Zhou, Rundong
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 14304 - 14314
  • [9] Interacting multiple model Poisson multi-Bernoulli mixture filter for maneuvering targets tracking
    Chen Z.
    Song L.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (03): : 786 - 794
  • [10] Tracking multiple extended targets with multi-Bernoulli filter
    Hu, Qi
    Ji, Hongbing
    Zhang, Yongquan
    IET SIGNAL PROCESSING, 2019, 13 (04) : 443 - 455