Comparative electrochemical sodium insertion/extraction behavior in layered NaxVS2 and NaxTiS2

被引:29
作者
Lee, Eungje [1 ]
Sahgong, SunHye [2 ]
Johnson, Christopher S. [1 ]
Kim, Youngsik [2 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Energy Storage Dept, Argonne, IL 60439 USA
[2] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 689798, South Korea
关键词
NaVS2; NaTiS2; Layered sulfides; Sodium intercalation; Displacement conversion reaction; LI-ION BATTERIES; ELECTRODE MATERIALS; INTERCALATION COMPOUNDS; HIGH-CAPACITY; NA; CHALLENGES; PERFORMANCE; DISULFIDE; INSERTION; NACRO2;
D O I
10.1016/j.electacta.2014.08.032
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study investigates the electrochemical sodium insertion/extraction of NaxVS2, and NaxTiS2 in the voltage range where either intercalation (0.2 <= x <= 1) or displacement-conversion reaction (x > 1) occurs. Both NaxVS2 and NaxTiS2 showed good reversible capacities, as high as similar to 160 mAh/g at an average voltage of similar to 1.9 V vs. Na in the region for the intercalation reaction (0.2 <= x <= 1). When sodium (Na) insertion was forced further to the x > 1 composition, NaxVS2 exhibited the direct displacement-conversion reaction at 0.3 V vs. Na without further Na intercalation, which contrasted with the wider lithium intercalation range of 0 < x <= 2 for LixVS2. The displacement-conversion reaction for NaxVS2 (x > 1) was reversible with a specific capacity of above 200 mAh/g up to 15 cycles, but the displacement reaction for NaxTiS2 (x > 1) was not observed. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:272 / 277
页数:6
相关论文
共 30 条
[21]   Reversible NaVS2 (De)Intercalation Cathode for Na-Ion Batteries [J].
Lee, Eungje ;
Lee, Wen Chao ;
Asl, Nina Mahootcheian ;
Kim, Donghan ;
Slater, Michael ;
Johnson, Christopher ;
Kim, Youngsik .
ECS ELECTROCHEMISTRY LETTERS, 2012, 1 (05) :A71-A73
[22]   Electrochemical Properties of Monoclinic NaMnO2 [J].
Ma, Xiaohua ;
Chen, Hailong ;
Ceder, Gerbrand .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (12) :A1307-A1312
[23]   Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J].
Poizot, P ;
Laruelle, S ;
Grugeon, S ;
Dupont, L ;
Tarascon, JM .
NATURE, 2000, 407 (6803) :496-499
[24]   RECHARGEABLE ELECTRODES FROM SODIUM COBALT BRONZES [J].
SHACKLETTE, LW ;
JOW, TR ;
TOWNSEND, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (11) :2669-2674
[25]   Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies [J].
Wenzel, Sebastian ;
Hara, Takeshi ;
Janek, Juergen ;
Adelhelm, Philipp .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3342-3345
[26]   CHEMISTRY OF INTERCALATION COMPOUNDS - METAL GUESTS IN CHALCOGENIDE HOSTS [J].
WHITTINGHAM, MS .
PROGRESS IN SOLID STATE CHEMISTRY, 1978, 12 (01) :41-99
[27]   SODIUM INTERCALATES OF VANADIUM DISULFIDE AND THEIR HYDROLYSIS PRODUCTS [J].
WIEGERS, GA ;
VANDERME.R ;
VANHEINI.H ;
KLOOSTERBOER, HJ ;
ALBERINK, AJ .
MATERIALS RESEARCH BULLETIN, 1974, 9 (09) :1261-1266
[28]   NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes [J].
Xia, Xin ;
Dahn, J. R. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (01) :A1-A4
[29]   High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications [J].
Xiao, Lifen ;
Cao, Yuliang ;
Xiao, Jie ;
Wang, Wei ;
Kovarik, Libor ;
Nie, Zimin ;
Liu, Jun .
CHEMICAL COMMUNICATIONS, 2012, 48 (27) :3321-3323
[30]   High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries [J].
Yu, Denis Y. W. ;
Prikhodchenko, Petr V. ;
Mason, Chad W. ;
Batabyal, Sudip K. ;
Gun, Jenny ;
Sladkevich, Sergey ;
Medvedev, Alexander G. ;
Lev, Ovadia .
NATURE COMMUNICATIONS, 2013, 4