Differential Hopf algebra structure of the quantum standard complex

被引:2
作者
Drabant, B [1 ]
机构
[1] UNIV LOUVAIN,DEPT MATH,B-3001 LOUVAIN,BELGIUM
关键词
D O I
10.1063/1.531999
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We are investigating the quantum standard complex (K(q,g),d) of the quantum enveloping algebra U-q(g) for Lie algebras g associated with the root systems, A(n), B-n, C-n, and D-n. It is a quantum version of the standard Koszul complex associated to a Lie algebra as applied for instance in the BRS quantization procedure in connection with spin representations. Using techniques from the theory of braided monoidal categories we obtain a differential Hopf algebra structure on the complex (K(q,g),d). (C) 1997 American Institute of Physics.
引用
收藏
页码:2652 / 2659
页数:8
相关论文
共 29 条
[1]  
Abe E., 1980, HOPF ALGEBRAS
[2]  
BESPALOV Y, 1996, PREPRINT
[3]  
BESPALOV Y, 1995, QALG9510009
[4]  
BESPALOV Y, 1995, QALG9510013
[5]   REMARKS ON BICOVARIANT DIFFERENTIAL CALCULI AND EXTERIOR HOPF-ALGEBRAS [J].
BRZEZINSKI, T .
LETTERS IN MATHEMATICAL PHYSICS, 1993, 27 (04) :287-300
[6]   BICOVARIANT DIFFERENTIAL-CALCULUS ON QUANTUM GROUPS SUQ(N) AND SOQ(N) [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
WATAMURA, S ;
WEICH, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (03) :605-641
[7]   Braided bosonization and inhomogeneous quantum groups [J].
Drabant, B .
ACTA APPLICANDAE MATHEMATICAE, 1996, 44 (1-2) :117-132
[8]   The standard complex of quantum enveloping algebras [J].
Drabant, B ;
Ogievetski, O ;
Schlieker, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11) :2751-2769
[9]   THE HOPF ALGEBRA OF VECTOR-FIELDS ON COMPLEX QUANTUM GROUPS [J].
DRABANT, B ;
JURCO, B ;
SCHLIEKER, M ;
WEICH, W ;
ZUMINO, B .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 26 (02) :91-96
[10]  
Drinfeld V. G., 1986, P INT C MATHEMATICAN, P798