Human brain regions involved in recognizing environmental sounds

被引:164
作者
Lewis, JW
Wightman, FL
Brefczynski, JA
Phinney, RE
Binder, JR
DeYoe, EA
机构
[1] Med Coll Wisconsin, Dept Radiol, Milwaukee, WI 53226 USA
[2] Med Coll Wisconsin, Dept Cell Biol Neurobiol & Anat, Milwaukee, WI 53226 USA
[3] Med Coll Wisconsin, Dept Neurol, Milwaukee, WI 53226 USA
[4] Univ Louisville, Heuser Hearing Inst, Louisville, KY 40203 USA
关键词
auditory cortex; fMRI; multimodal processing; object motion; temporal lobe;
D O I
10.1093/cercor/bhh061
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To identify the brain regions preferentially involved in environmental sound recognition (comprising portions of a putative auditory 'what' pathway), we collected functional imaging data while listeners attended to a wide range of sounds, including those produced by tools, animals, liquids and dropped objects. These recognizable sounds, in contrast to unrecognizable, temporally reversed control sounds, evoked activity in a distributed network of brain regions previously associated with semantic processing, located predominantly in the left hemisphere, but also included strong bilateral activity in posterior portions of the middle temporal gyri (pMTG). Comparisons with earlier studies suggest that these bilateral pMTG foci partially overlap cortex implicated in high-level visual processing of complex biological motion and recognition of tools and other artifacts. We propose that the pMTG foci process multimodal (or supramodal) information about objects and object-associated motion, and that this may represent 'action' knowledge that can be recruited for purposes of recognition of familiar environmental sound-sources. These data also provide a functional and anatomical explanation for the symptoms of pure auditory agnosia for environmental sounds reported in human lesion studies.
引用
收藏
页码:1008 / 1021
页数:14
相关论文
共 104 条
[1]  
Albert M L, 1972, Cortex, V8, P427
[2]   Visuo-haptic object-related activation in the ventral visual pathway [J].
Amedi, A ;
Malach, R ;
Hendler, T ;
Peled, S ;
Zohary, E .
NATURE NEUROSCIENCE, 2001, 4 (03) :324-330
[3]  
[Anonymous], NEUROLOGICAL FDN COG
[4]  
[Anonymous], SOMATOSENSORY SYSTEM
[5]   PROCESSING STRATEGIES FOR TIME-COURSE DATA SETS IN FUNCTIONAL MRI OF THE HUMAN BRAIN [J].
BANDETTINI, PA ;
JESMANOWICZ, A ;
WONG, EC ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (02) :161-173
[6]   Cortical mechanisms specific to explicit visual object recognition [J].
Bar, M ;
Tootell, RBH ;
Schacter, DL ;
Greve, DN ;
Fischl, B ;
Mendola, JD ;
Rosen, BR ;
Dale, AM .
NEURON, 2001, 29 (02) :529-535
[7]   Dissociating working memory from task difficulty in human prefrontal cortex [J].
Barch, DM ;
Braver, TS ;
Nystrom, LE ;
Forman, SD ;
Noll, DC ;
Cohen, JD .
NEUROPSYCHOLOGIA, 1997, 35 (10) :1373-1380
[8]   A movement-sensitive area in auditory cortex [J].
Baumgart, F ;
Gaschler-Markefski, B ;
Woldorff, MG ;
Heinze, HJ ;
Scheich, H .
NATURE, 1999, 400 (6746) :724-726
[9]   Parallel visual motion processing streams for manipulable objects and human movements [J].
Beauchamp, MS ;
Lee, KE ;
Haxby, JV ;
Martin, A .
NEURON, 2002, 34 (01) :149-159
[10]   Voice-selective areas in human auditory cortex [J].
Belin, P ;
Zatorre, RJ ;
Lafaille, P ;
Ahad, P ;
Pike, B .
NATURE, 2000, 403 (6767) :309-312