Monotonic rearrangements of functions with small mean oscillation

被引:8
|
作者
Stolyarov, Dmitriy M. [1 ,2 ,3 ]
Vasyunin, Vasily I. [3 ]
Zatitskiy, Pavel B. [2 ,3 ]
机构
[1] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[2] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199178, Russia
[3] Russian Acad Sci PDMI RAS, VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
基金
俄罗斯科学基金会;
关键词
BMO; Muckenhoupt class; monotonic rearrangement;
D O I
10.4064/sm8326-2-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain sharp bounds for the monotonic rearrangement operator from "dyadic-type" classes to "continuous" ones; in particular, for the BMO space and Muckenhoupt classes. The idea is to connect the problem with a simple geometric construction named alpha-extension.
引用
收藏
页码:257 / 267
页数:11
相关论文
共 50 条
  • [1] MEAN OSCILLATION BOUNDS ON REARRANGEMENTS
    Burchard, Almut
    Dafni, Galia
    Gibara, Ryan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (06) : 1 - 16
  • [2] Vanishing mean oscillation and continuity of rearrangements
    Burchard, Almut
    Dafni, Galia
    Gibara, Ryan
    ADVANCES IN MATHEMATICS, 2024, 437
  • [3] ON FUNCTIONS OF BOUNDED MEAN OSCILLATION
    JOHN, F
    NIRENBERG, L
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1961, 14 (03) : 415 - &
  • [4] Sharp estimates of integral functionals on classes of functions with small mean oscillation
    Ivanisvili, Paata
    Osipov, Nikolay N.
    Stolyarov, Dmitriy M.
    Vasyunin, Vasily I.
    Zatitskiy, Pavel B.
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (12) : 1081 - 1085
  • [5] Functions of bounded mean oscillation
    Chang, DC
    Sadosky, C
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (03): : 573 - 601
  • [6] FUNCTIONS WITH CONDITIONS ON MEAN OSCILLATION
    JANSON, S
    ARKIV FOR MATEMATIK, 1976, 14 (02): : 189 - 196
  • [7] FUNCTIONS OF VANISHING MEAN OSCILLATION
    SARASON, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 207 (JUN) : 391 - 405
  • [8] FUNCTIONS OF VANISHING MEAN-OSCILLATION
    SHI, XL
    TORCHINSKY, A
    MATHEMATISCHE NACHRICHTEN, 1987, 133 : 289 - 296
  • [9] Extension of functions with bounded mean oscillation
    Shanin R.V.
    Journal of Mathematical Sciences, 2014, 196 (5) : 693 - 704
  • [10] On functions of bounded β-dimensional mean oscillation
    Chen, You-Wei
    Spector, Daniel
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (03) : 975 - 996