Anderson's module for cyclotomic fields of prime conductor

被引:6
作者
Cornacchia, P [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
D O I
10.1006/jnth.1997.2184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently G. Anderson introduced an explicit Galois module A that is closely related to the ideal class group of a cyclotomic field. We study A for a cyclotomic field L of prime conductor. We prove that A has the same Tate cohomology groups as the ideal class group of L and we show that the dual of A is a cyclic Galois module. In addition, we determine the structure of the 2-part of A for all L of conductor less than 10000. (C) 1997 Academic Press.
引用
收藏
页码:252 / 276
页数:25
相关论文
共 19 条
[1]   Another look at the index formulas of cyclotomic number theory [J].
Anderson, GW .
JOURNAL OF NUMBER THEORY, 1996, 60 (01) :142-164
[2]  
CASSELS JWS, 1967, ALGEBRAIC NUMBER THE
[3]  
CORNACCHIA P, IN PRESS P AM MATH S
[4]  
Eilenberg S., 1955, NAGOYA MATH J, V9, P1
[5]  
EISENBUD D, 1995, GRADUATE TEXTS MATH, V150
[6]   STRUCTURE OF GROUPS OF RELATIVE CLASSES (APPENDIX WITH NUMERICAL EXAMPLES) [J].
GRAS, G ;
BERTHIER, T .
ANNALES DE L INSTITUT FOURIER, 1993, 43 (01) :1-20
[7]  
GRAS G, 1977, PUBL MATH FS BESANCO, V1
[8]   CLASS-GROUPS OF ABELIAN-FIELDS, AND THE MAIN CONJECTURE [J].
GREITHER, C .
ANNALES DE L INSTITUT FOURIER, 1992, 42 (03) :449-499
[9]  
KRAFT JS, 1995, COMPOS MATH, V97, P135
[10]  
Lang Serge, 1990, Graduate Texts in Mathematics, V121