Wellfounded trees in categories

被引:74
作者
Moerdijk, I
Palmgren, E
机构
[1] Uppsala Univ, Matemat Inst, S-75106 Uppsala, Sweden
[2] Univ Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands
基金
瑞典研究理事会;
关键词
initial algebras; locally cartesian closed categories; pretoposes; Artin gluing; sheaves; wellfounded trees; Martin-Lof type theory;
D O I
10.1016/S0168-0072(00)00012-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present and study a categorical formulation of the W-types of Martin-Lof. These are essentially free term algebras where the operations may have finite or infinite arity. It is shown that W-types are preserved under the construction of sheaves and Artin gluing. In the proofs we avoid using impredicative or nonconstructive principles. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: primary: 03B15; 03G30; 18A15; 18B25; 18C15; 18F20; secondary: 18C50; 68N18.
引用
收藏
页码:189 / 218
页数:30
相关论文
共 20 条
[1]   FIBERED CATEGORIES AND THE FOUNDATIONS OF NAIVE CATEGORY THEORY [J].
BENABOU, J .
JOURNAL OF SYMBOLIC LOGIC, 1985, 50 (01) :10-37
[2]   Intuitionistic choice and classical logic [J].
Coquand, T ;
Palmgren, E .
ARCHIVE FOR MATHEMATICAL LOGIC, 2000, 39 (01) :53-74
[3]  
Curien P.-L., 1993, Fundamenta Informaticae, V19, P51
[4]   Representing inductively defined sets by wellorderings in Martin-Lof's type theory [J].
Dybjer, P .
THEORETICAL COMPUTER SCIENCE, 1997, 176 (1-2) :329-335
[5]  
Freyd P., 1990, Categories, Allegories
[6]   FORCING IN INTUITIONISTIC SYSTEMS WITHOUT POWER-SET [J].
GRAYSON, RJ .
JOURNAL OF SYMBOLIC LOGIC, 1983, 48 (03) :670-682
[7]  
HOFMANN M, 1995, LECT NOTES COMPUTER, V933
[8]  
Hofmann M., 1997, EXTENSIONAL CONSTRUC
[9]  
Jacobs B., 1998, CATEGORICAL LOGIC TY, DOI [10.1016/s0049-237x(98)x8028-6, DOI 10.1016/S0049-237X(98)X8028-6]
[10]  
Johnstone Peter, 1977, Topos theory