Norms of randomized circulant matrices

被引:2
作者
Latala, Rafal [1 ]
Swiatowski, Witold [2 ]
机构
[1] Univ Warsaw, Inst Math, Warsaw, Poland
[2] Polish Acad Sci, Inst Math, Warsaw, Poland
关键词
non-homogenous random matrix; operator norm; circulant matrix;
D O I
10.1214/22-EJP799
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate two-sided bounds for operator norms of random matrices with nonhomogenous independent entries. We formulate a lower bound for Rademacher matrices and conjecture that it may be reversed up to a universal constant. We show that our conjecture holds up to log log n factor for randomized n ?? n circulant matrices and that the double logarithm may be eliminated under some mild additional assumptions on the coefficients.
引用
收藏
页数:24
相关论文
共 14 条
[1]  
ANDERSON G. W., 2010, Cambridge Studies in Advanced Mathematics, V118
[2]  
BANDEIRA A., ARXIV210806312
[3]   THE DISTRIBUTION OF VECTOR-VALUED RADEMACHER SERIES [J].
DILWORTH, SJ ;
MONTGOMERYSMITH, SJ .
ANNALS OF PROBABILITY, 1993, 21 (04) :2046-2052
[4]   OPTIMAL ASSIGNMENTS OF NUMBERS TO VERTICES [J].
HARPER, LH .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (01) :131-135
[6]  
Hitczenko P, 1994, PROG PROBAB, V35, P31
[7]   The dimension-free structure of nonhomogeneous random matrices [J].
Latala, Rafal ;
van Handel, Ramon ;
Youssef, Pierre .
INVENTIONES MATHEMATICAE, 2018, 214 (03) :1031-1080
[8]   COMPARISON OF WEAK AND STRONG MOMENTS FOR VECTORS WITH INDEPENDENT COORDINATES [J].
Latala, Rafal ;
Strzelecka, Marta .
MATHEMATIKA, 2018, 64 (01) :211-229
[9]  
Ledoux M., 1991, Probability in Banach Spaces, DOI DOI 10.1007/978-3-642-20212-4
[10]   THE DISTRIBUTION OF RADEMACHER SUMS [J].
MONTGOMERYSMITH, SJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (02) :517-522