Global Existence of Weak Solutions for Viscous Incompressible Flows around a Moving Rigid Body in Three Dimensions

被引:129
作者
Gunzburger, Max D. [1 ]
Lee, Hyung-Chun [2 ]
Seregin, Gregory A. [3 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Ajou Univ, Dept Math, Suwon 442749, South Korea
[3] VA Steklov Math Inst, St Petersburg Dept, Fontanka 27, St Petersburg 191011, Russia
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; rigid body motions;
D O I
10.1007/PL00000954
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the motion of a rigid body of arbitrary shape immersed in a viscous incompressible fluid in a bounded, three-dimensional domain. The motion of the rigid body is caused by the action of given forces exerted on the fluid and on the rigid body. For this problem, we prove the global existence of weak solutions.
引用
收藏
页码:219 / 266
页数:48
相关论文
共 10 条
[1]  
CONCA C., ANAL FLUID RIGID BOD
[2]   Existence of weak solutions for the motion of rigid bodies in a viscous fluid [J].
Desjardins, B ;
Esteban, MJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 146 (01) :59-71
[3]  
Fujita H., 1970, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V17, P403
[4]   On the steady self-propelled motion of a body in a viscous incompressible fluid [J].
Galdi, GP .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 148 (01) :53-88
[5]  
LADYZHENSKAYA O., 1970, BOUND VALUE PROBL, VIII, P35
[6]  
Ladyzhenskaya O. A., 1976, Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 9. Zap. Naun. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), V59, P81
[7]  
LADYZHENSKAYA OA, 1970, MATH PROBLEMS DYNAMI
[8]  
LADYZHENSKAYA OA, 1961, MATH PROBLEMS DYNAMI
[9]  
Serre D, 1987, JAPAN J APPL MATH, V4, P99
[10]  
WEINBERGER H., 1973, P S PURE MATH, VXXIII