Positive solutions for nonlinear parametric singular Dirichlet problems

被引:42
作者
Papageorgiou, Nikolaos S. [1 ,2 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
Repovs, Dusan D. [2 ,5 ,6 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
[3] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[4] Simion Stoilow Romanian Acad, Inst Math, POB 1-764, Bucharest 014700, Romania
[5] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[6] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
关键词
Parametric singular term; (p-1)-linear perturbation; uniform nonresonance; nonlinear regularity theory; truncation; strong comparison principle; bifurcation-type theorem; SOBOLEV;
D O I
10.1142/S1664360719500115
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlinear parametric Dirichlet problem driven by the p-Laplace differential operator and a reaction which has the competing effects of a parametric singular term and of a Caratheodory perturbation which is (p - 1)-linear near vertical bar infinity. The problem is uniformly nonresonant with respect to the principal eigenvalue of ( -Delta(p), W-0(1,p) (Omega)). We look for positive solutions and prove a bifurcation-type theorem describing in an exact way the dependence of the set of positive solutions on the parameter gimel > 0.
引用
收藏
页数:21
相关论文
共 21 条
[1]  
Aizicovici Sergiu, 2008, MATH Z, V196, pvi+, DOI 10.1090/ memo/ 0915
[2]  
[Anonymous], 2014, TOPOLOGICAL VARIATIO, DOI DOI 10.1007/978-1-4614-9323-5
[3]   ON A SINGULAR NONLINEAR DIRICHLET PROBLEM [J].
COCLITE, MM ;
PALMIERI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (10) :1315-1327
[4]  
Gasinski L., 2016, Exercises in Analysis. Part 2. Nonlinear Analysis
[5]  
GASINSKI L., 2006, NONLINEAR ANAL
[6]   Sublinear singular elliptic problems with two parameters [J].
Ghergu, M ;
Radulescu, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (02) :520-536
[7]  
Ghergu M., 2008, Singular elliptic problems: bifurcation and asymptotic analysis, Oxford lecture series in mathematics and its applications, V37
[8]  
Giacomoni J, 2007, ANN SCUOLA NORM-SCI, V6, P117
[9]   QUASILINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
GUEDDA, M ;
VERON, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :879-902
[10]  
Hewitt Edwin, 1975, Graduate Texts in Mathematics, V25