On the history of multivariate polynomial interpolation

被引:121
作者
Gasca, M [1 ]
Sauer, T
机构
[1] Univ Zaragoza, Dept Math Appl, E-50009 Zaragoza, Spain
[2] Univ Erlangen Nurnberg, Math Inst, D-91054 Erlangen, Germany
关键词
All Open Access; Bronze;
D O I
10.1016/S0377-0427(00)00353-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multivariate polynomial interpolation is a basic and fundamental subject in Approximation Theory and Numerical Analysis, which has received and continues receiving not deep but constant attention. In this short survey, we review its development in the first 75 years of this century, including a pioneering paper by Kronecker in the 19th century. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:23 / 35
页数:13
相关论文
共 52 条
[1]   BIVARIATE GENERALIZATION OF HERMITES INTERPOLATION FORMULA [J].
AHLIN, AC .
MATHEMATICS OF COMPUTATION, 1964, 18 (86) :264-+
[2]  
[Anonymous], 1978, ALGEBRAIC CURVES
[3]  
[Anonymous], 1966, APPROXIMATION FUNCTI
[4]  
Berezin I., 1965, COMPUTING METHODS
[5]  
Biermann O., 1903, MONATSH MATH PHYS, V14, P211
[6]  
BIERMANN O, 1905, VORLESUNGEN MATH NAH
[7]   PIECEWISE HERMITE INTERPOLATION IN ONE AND 2 VARIABLES WITH APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS [J].
BIRKHOFF, G ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1968, 11 (03) :232-&
[8]  
Borchardt W, 1860, ABH PREUSS AKAD WISS, P1
[9]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[10]   MULTIPOINT TAYLOR FORMULAS AND APPLICATIONS TO FINITE ELEMENT METHOD [J].
CIARLET, PG ;
WAGSCHAL, C .
NUMERISCHE MATHEMATIK, 1971, 17 (01) :84-&