Sharp A2 inequality for Haar shift operators

被引:62
作者
Lacey, Michael T. [1 ]
Petermichl, Stefanie [2 ]
Reguera, Maria Carmen [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 9, France
基金
美国国家科学基金会;
关键词
AHLFORS-BEURLING OPERATOR; BELLMAN FUNCTIONS; NORM; EXTRAPOLATION; SPACES; MAPS;
D O I
10.1007/s00208-009-0473-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As a Corollary to the main result of the paper, we give a new proof of the inequality parallel to T f parallel to(L2(w)) less than or similar to parallel to w parallel to(A2) parallel to f parallel to(L2(w)), where T is either the Hilbert transform (Amer J Math 129(5): 1355-1375, 2007), a Riesz transform (Proc Amer Math Soc 136(4): 1237-1249, 2008), or the Beurling operator (Duke Math J 112(2): 281-305, 2002). The weight w is non-negative, and the linear growth in the A(2) characteristic on the right is sharp. Prior proofs relied strongly on Haar shift operators (CR Acad Sci Paris Ser I Math 330(6): 455-460, 2000) and Bellman function techniques. The new proof uses Haar shifts, and then uses an elegant 'two weight T1 theorem' of Nazarov-Treil-Volberg (Math Res Lett 15(3): 583-597, 2008) to immediately identify relevant Carleson measure estimates, which are in turn verified using an appropriate corona decomposition of the weight w.
引用
收藏
页码:127 / 141
页数:15
相关论文
共 19 条
[1]   Carleson measures, trees, extrapolation, and T(b) theorems [J].
Auscher, P ;
Hofmann, S ;
Muscalu, C ;
Tao, T ;
Thiele, C .
PUBLICACIONS MATEMATIQUES, 2002, 46 (02) :257-325
[2]   Linear bound for the dyadic paraproduct on weighted Lebesgue space L2(w) [J].
Beznosova, Oleksandra V. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :994-1007
[3]   ESTIMATES FOR OPERATOR NORMS ON WEIGHTED SPACES AND REVERSE JENSEN INEQUALITIES [J].
BUCKLEY, SM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) :253-272
[4]  
DAVID G, 1991, ASTERISQUE, P1
[5]  
David G, 1993, Mathematical Surveys and Monographs, V38
[6]  
Dragicevic O, 2003, MICH MATH J, V51, P415
[7]   Extrapolation and sharp norm estimates for classical operators on weighted lebesgue spaces [J].
Dragicevic, O ;
Grafakos, L ;
Pereyra, C ;
Petermichl, S .
PUBLICACIONS MATEMATIQUES, 2005, 49 (01) :73-91
[8]  
Hukovic S., 2000, OPER THEOR, V113, P97
[9]   SOME WEIGHTED WEAK-TYPE INEQUALITIES FOR HARDY-LITTLEWOOD MAXIMAL FUNCTION AND HILBERT TRANSFORM [J].
MUCKENHOUPT, B ;
WHEEDEN, RL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (05) :801-816
[10]  
Nazarov F, 2008, MATH RES LETT, V15, P583