The characterization of 2-local Lie automorphisms of some operator algebras

被引:2
作者
Fang, Xiaochun [1 ]
Zhao, Xingpeng [1 ]
Yang, Bing [1 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Normalized property; 2-Local Lie automorphism; LOCAL AUTOMORPHISMS; COMMUTING TRACES; DERIVATIONS; ISOMORPHISMS; MAPS; PRODUCTS;
D O I
10.1007/s13226-021-00122-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M subset of BoXTHORN be an algebra with nontrivial idempotents or nontrivial projections if M is a *-algebra and Z(M) = CI. In this paper, the notion of (strong) 2-local Lie automorphism normalized property is introduced and it is proved that if M has 2-local Lie automorphism normalized property and Phi : M -> M is an almost additive surjective 2-local Lie isomorphism with idempotent decomposition property, then Phi = psi + tau, where W is an automorphism of M or the negative of an anti-automorphism of M and tau is a homogenous map from M into CI. Moreover, it is proved that nest algebras on a separable complex Hilbert space H with dimH > 2 and factor von Neumann algebras on a separable complex Hilbert space H with dimH >= 2 have strong 2-local Lie automorphism normalized property.
引用
收藏
页码:961 / 970
页数:10
相关论文
共 21 条
[1]  
Ayupov SA, 2013, ANN FUNCT ANAL, V4, P110
[2]   On Herstein's Lie map conjectures, I [J].
Beidar, KI ;
Bresar, M ;
Chebotar, MA ;
Martindale, WS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (10) :4235-4260
[3]   Commuting traces and commutativity preserving maps on triangular algebras [J].
Benkovic, D ;
Eremita, D .
JOURNAL OF ALGEBRA, 2004, 280 (02) :797-824
[5]   2-local Lie isomorphisms of operator algebras on Banach spaces [J].
Chen, Lin ;
Huang, Lizhong ;
Lu, Fangyan .
STUDIA MATHEMATICA, 2015, 229 (01) :1-11
[6]   Local derivations on operator algebras [J].
Crist, RL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (01) :76-92
[7]  
ERDOS J. A., 1968, J. London Math. Soc., V43, P391
[8]   Ring isomorphisms and linear or additive maps preserving zero products on nest algebras [J].
Hou, JC ;
Zhang, ML .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 :343-360
[9]  
Johnson BE, 2000, T AM MATH SOC, V353, P313
[10]   LOCAL DERIVATIONS [J].
KADISON, RV .
JOURNAL OF ALGEBRA, 1990, 130 (02) :494-509