PERSISTENCE OF THE NON-TWIST TORUS IN NEARLY INTEGRABLE HAMILTONIAN SYSTEMS

被引:23
作者
Xu, Junxiang [1 ]
You, Jiangong [2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian system; KAM iteration; invariant tori; non-degeneracy condition; INVARIANT TORI; DEGENERACY; SETS;
D O I
10.1090/S0002-9939-10-10151-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider analytic nearly integrable hamiltonian systems, and prove that if the frequency mapping has nonzero Brouwer topo-logical degree at some Diophantine frequency, then the invariant torus with this frequency persists under small perturbations.
引用
收藏
页码:2385 / 2395
页数:11
相关论文
共 16 条
[1]  
Arnold V.I., 1963, Russ. Math. Surv., V18, P9, DOI DOI 10.1070/RM1963V018N05ABEH004130
[2]  
ARNOLD VI, 1988, ENCY MATH SCI, V3
[3]   Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems [J].
Cheng, CQ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (03) :529-559
[4]  
Eliasson L H., 1988, Ann. della Scuola Norm. Super. Pisa-Cl. Sci, V15, P115
[5]  
Kolmogorov A.N., 1954, Dokl. Akad. Nauk SSSR, V98, P527, DOI DOI 10.1007/BFB0021737
[6]   CONVERGENT SERIES EXPANSIONS FOR QUASI-PERIODIC MOTIONS [J].
MOSER, J .
MATHEMATISCHE ANNALEN, 1967, 169 (01) :136-&
[7]   INTEGRABILITY OF HAMILTONIAN-SYSTEMS ON CANTOR SETS [J].
POSCHEL, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (05) :653-696
[8]  
POSCHEL J, 1992, COMMUNICATION MAY
[9]   INVARIANT TORI IN NON-DEGENERATE NEARLY INTEGRABLE HAMILTONIAN SYSTEMS [J].
Ruessmann, H. .
REGULAR & CHAOTIC DYNAMICS, 2001, 6 (02) :119-204
[10]  
Russmann H., 1990, MATH APPL, V59, P211