Fractal Levy correlation cascades

被引:22
作者
Eliazar, Iddo [1 ]
Klafter, Joseph
机构
[1] Holon Inst Technol, Dept Technol Management, IL-58102 Holon, Israel
[2] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1088/1751-8113/40/16/F03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The correlation structure of a wide class of random processes, driven by stable non-Gaussian Levy noise sources, is explored. Since these noises are of infinite variance, correlations cannot be measured via auto-covariance functions. Exploiting the underlying Poissonian structure of Levy noises, we present a cascade of 'Poissonian correlation functions' which characterize the correlation structure and the process distribution of the processes under consideration. The theory developed is applied to various examples including motions, Ornstein-Uhlenbeck and moving-average processes, and fractional motions and noises-all driven by stable non-Gaussian Levy noises.
引用
收藏
页码:F307 / F314
页数:8
相关论文
共 38 条
[1]  
[Anonymous], 2003, LECT NOTES PHYS
[2]  
[Anonymous], 2000, THEORY FINANCIAL RIS
[3]  
Applebum D, 2004, Levy Processes and Stochastic Calculus
[4]  
BREMAUD P, 2002, MATH PRINCPLES SIGNA
[5]  
CAMBANIS S, 1995, STUD MATH, V115, P109
[6]   Barrier crossing of a Levy flight [J].
Chechkin, AV ;
Gonchar, VY ;
Klafter, J ;
Metzler, R .
EUROPHYSICS LETTERS, 2005, 72 (03) :348-354
[7]   Bifurcation, bimodality, and finite variance in confined Levy flights [J].
Chechkin, AV ;
Klafter, J ;
Gonchar, VY ;
Metzler, R ;
Tanatarov, LV .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[8]  
Coffey W. T., 2004, LANGEVIN EQUATION
[9]  
Cox D., 1984, STATISITCS, P55
[10]   Anomalous jumping in a double-well potential [J].
Ditlevsen, PD .
PHYSICAL REVIEW E, 1999, 60 (01) :172-179