In situ transmission electron microscopy of transistor operation and failure

被引:11
作者
Wang, Baoming [1 ,3 ]
Islam, Zahabul [1 ]
Haque, Aman [1 ]
Chabak, Kelson [2 ]
Snure, Michael [2 ]
Heller, Eric [2 ]
Glavin, Nicholas [2 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
[2] Air Force Res Lab, 2941 Hobson Way, Wright Patterson AFB, OH 45433 USA
[3] MIT, Mat Res Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
high electron mobility transistor; transmission electron microscopy; gallium nitride; MOBILITY TRANSISTORS; ALGAN/GAN HEMTS; GAN HEMTS; DEGRADATION;
D O I
10.1088/1361-6528/aac591
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microscopy is typically used as a post-mortem analytical tool in performance and reliability studies on nanoscale materials and devices. In this study, we demonstrate real time microscopy of the operation and failure of AlGaN/GaN high electron mobility transistors inside the transmission electron microscope. Loading until failure was performed on the electron transparent transistors to visualize the failure mechanisms caused by self-heating. At lower drain voltages, thermo-mechanical stresses induce irreversible microstructural deformation, mostly along the AlGaN/GaN interface, to initiate the damage process. At higher biasing, the self-heating deteriorates the gate and catastrophic failure takes place through metal/semiconductor inter-diffusion and/or buffer layer breakdown. This study indicates that the current trend of recreating the events, from damage nucleation to catastrophic failure, can be replaced by in situ microscopy for a quick and accurate account of the failure mechanisms.
引用
收藏
页数:7
相关论文
共 30 条
  • [11] Ghassemi H., 2012, Microsc. Microanal, V18, P1872, DOI [10.1017/S143192761201121X, DOI 10.1017/S143192761201121X]
  • [12] Glavin N R, 2014, ADV MATER, V22
  • [13] Characterization of Cross-Sectioned Gallium Nitride High-Electron-Mobility Transistors with In Situ Biasing
    Hilton, A. M.
    Brown, J. L.
    Moore, E. A.
    Hoelscher, J. A.
    Heller, E. R.
    Dorsey, D. L.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2015, 44 (10) : 3259 - 3264
  • [14] Optical investigation of degradation mechanisms in AlGaN/GaN high electron mobility transistors: Generation of non-radiative recombination centers
    Hodges, C.
    Killat, N.
    Kaun, S. W.
    Wong, M. H.
    Gao, F.
    Palacios, T.
    Mishra, U. K.
    Speck, J. S.
    Wolverson, D.
    Kuball, M.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (11)
  • [15] RECENT DEVELOPMENTS CONCERNING SAINT-VENANT PRINCIPLE
    HORGAN, CO
    KNOWLES, JK
    [J]. ADVANCES IN APPLIED MECHANICS, 1983, 23 : 179 - 269
  • [16] Critical voltage for electrical degradation of GaN high-electron mobility transistors
    Joh, Jungwoo
    del Alamo, Jesus A.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2008, 29 (04) : 287 - 289
  • [17] A model for the critical voltage for electrical degradation of GaN high electron mobility transistors
    Joh, Jungwoo
    Gao, Feng
    Palacios, Tomas
    del Alamo, Jesus A.
    [J]. MICROELECTRONICS RELIABILITY, 2010, 50 (06) : 767 - 773
  • [18] Transmission electron microscopy characterization of electrically stressed AlGaN/GaN high electron mobility transistor devices
    Johnson, Michael R.
    Cullen, David A.
    Liu, Lu
    Kang, Tsung Sheng
    Ren, Fan
    Chang, Chih-Yang
    Pearton, Stephen J.
    Jang, Soohwan
    Johnson, Wayne J.
    Smith, David J.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (06):
  • [19] Kiuchi M., 2005, 2005 5th IEEE International Conference on Nanotechnology (IEEE Cat. No.05TH8816), P486
  • [20] Lang A., 2014, Microsc. Microanal, V20, P1626, DOI [10.1017/S1431927614009866, DOI 10.1017/S1431927614009866]