3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering

被引:130
|
作者
Du, Xiaoyu [1 ,2 ]
Wei, Daixu [3 ]
Huang, Li [2 ]
Zhu, Min [1 ]
Zhang, Yaopeng [2 ]
Zhu, Yufang [1 ,2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai Belt & Rd Joint Lab Adv Fiber & Low Dime, Shanghai 201620, Peoples R China
[3] Northwest Univ, Coll Life Sci & Med, Xian 710069, Shanxi, Peoples R China
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2019年 / 103卷
基金
中国国家自然科学基金;
关键词
Silk fibroin; Mesoporous bioactive glass; 3D printing; Composite scaffolds; Bone tissue engineering; BETA-CA2SIO4; SCAFFOLDS; CALCIUM-SULFATE; REGENERATION; POLYCAPROLACTONE; VEGF;
D O I
10.1016/j.msec.2019.05.016
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The fabrication of bone tissue engineering scaffolds with high osteogenic ability and favorable mechanical properties is of huge interest. In this study, a silk fibroin (SF) solution of 30 wt% was extracted from cocoons and combined with mesoporous bioactive glass (MBG) to fabricate MBG/SF composite scaffolds by 3D printing. The porosity, compressive strength, degradation and apatite forming ability were evaluated. The results illustrated that MBG/SF scaffolds had superior compressive strength (ca. 20 MPa) and good biocompatibility, and stimulated bone formation ability compared to mesoporous bioactive glass/polycaprolactone (MBG/PCL) scaffolds. We subcutaneously transplanted hBMSCs-loaded MBG/SF and MBG/PCL scaffolds into the back of nude mice to evaluate heterotopic bone formation assay in vivo, and the results revealed that the gene expression levels of common osteogenic biomarkers on MBG/SF scaffolds were significantly better than MBG/PCL scaffolds. These results showed that 3D-printed MBG/SF composite scaffolds are great promising for bone tissue engineering.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Silk-Based 3D Porous Scaffolds for Tissue Engineering
    Xiao, Menglin
    Yao, Jinrong
    Shao, Zhengzhong
    Chen, Xin
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2024, 10 (05): : 2827 - 2840
  • [32] 3D printing mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds for bone repair
    Wu, Jingwen
    Miao, Guohou
    Zheng, Zhichao
    Li, Zhengmao
    Ren, Wen
    Wu, Caijuan
    Li, Yuanjing
    Huang, Zhu
    Yang, Lan
    Guo, Lvhua
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2019, 33 (06) : 755 - 765
  • [33] Silk fibroin-based scaffolds for tissue engineering
    Ma, Li
    Dong, Wenyuan
    Lai, Enping
    Wang, Jiamian
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [34] Silk fibroin scaffolds with inverse opal structure for bone tissue engineering
    Sommer, Marianne R.
    Vetsch, Jolanda R.
    Leemann, Jessica
    Mueller, Ralph
    Studart, Andre R.
    Hofmann, Sandra
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2017, 105 (07) : 2074 - 2084
  • [35] 3D printing of PCL-ceramic composite scaffolds for bone tissue engineering applications
    Parupelli, Santosh Kumar
    Saudi, Sheikh
    Bhattarai, Narayan
    Desai, Salil
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (06) : 539 - 551
  • [36] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Barbara Leukers
    Hülya Gülkan
    Stephan H. Irsen
    Stefan Milz
    Carsten Tille
    Matthias Schieker
    Hermann Seitz
    Journal of Materials Science: Materials in Medicine, 2005, 16 : 1121 - 1124
  • [37] 3D printing of HA / PCL composite tissue engineering scaffolds
    Jiao Z.
    Luo B.
    Xiang S.
    Ma H.
    Yu Y.
    Yang W.
    Advanced Industrial and Engineering Polymer Research, 2019, 2 (04): : 196 - 202
  • [38] Production and Characterization of Poly (Lactic Acid)/Nanostructured Carboapatite for 3D Printing of Bioactive Scaffolds for Bone Tissue Engineering
    Palhares, Thiago Nunes
    de Menezes, Livia Rodrigues
    Kronemberger, Gabriela Soares
    de Miranda Borchio, Priscila Grion
    Baptista, Leandra Santos
    Boldrini Pereira, Leonardo da Cunha
    da Silva, Emerson Oliveira
    3D PRINTING AND ADDITIVE MANUFACTURING, 2021, 8 (04) : 227 - 237
  • [39] Chitosan/β-TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach
    Piaia, Lya
    Silva, Simone S.
    Gomes, Joana M.
    Franco, Albina R.
    Fernandes, Emanuel M.
    Lobo, Flavia C. M.
    Rodrigues, Luisa C.
    Leonor, Isabel B.
    Fredel, Marcio C.
    Salmoria, Gean, V
    Hotza, Dachamir
    Reis, Rui L.
    BIOMEDICAL MATERIALS, 2022, 17 (01)
  • [40] Alendronate releasing silk fibroin 3D bioprinted scaffolds for application in bone tissue engineering: Effects of alginate concentration on printability, mechanical properties and stability
    Norouzi, Fatemeh
    Bagheri, Fatemeh
    Hashemi-Najafabadi, Sameereh
    RESULTS IN ENGINEERING, 2024, 22