Decomposition of images by the anisotropic Rudin-Osher-Fatemi model

被引:175
作者
Esedoglu, S [1 ]
Osher, SJ [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1002/cpa.20045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The total-variation-based image denoising model of Rudin, Osher, and Fatemi can be generalized in a natural way to favor certain edge directions. We consider the resulting anisotropic energies and study properties of their minimizers. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:1609 / 1626
页数:18
相关论文
共 9 条
[1]  
[Anonymous], 2001, INTERFACES FREE BOUN, DOI DOI 10.4171/IFB/47
[2]   The total variation flow in RN [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :475-525
[3]   On a crystalline variational problem, Part II: BV regularity and structure of minimizers on facets [J].
Bellettini, G ;
Novaga, M ;
Paolini, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 157 (03) :193-217
[4]  
Meyer Y., 2001, U LECT SERIES, V22
[5]   Regularity results for some 1-homogeneous functionals [J].
Novaga, M ;
Paolini, E .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (04) :555-566
[6]   Image decomposition and restoration using total variation minimization and the H-1 norm [J].
Osher, S ;
Solé, A ;
Vese, L .
MULTISCALE MODELING & SIMULATION, 2003, 1 (03) :349-370
[7]  
OSHER S, 1997, ASIAN J MATH, V1, P560
[8]   NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS [J].
RUDIN, LI ;
OSHER, S ;
FATEMI, E .
PHYSICA D, 1992, 60 (1-4) :259-268
[9]   Modeling textures with total variation minimization and oscillating patterns in image processing [J].
Vese, LA ;
Osher, SJ .
JOURNAL OF SCIENTIFIC COMPUTING, 2003, 19 (1-3) :553-572