Multiple solutions for a class of fractional equations

被引:0
作者
Pei, Ruichang [1 ]
Zhang, Jihui [2 ]
Ma, Caochuan [1 ]
机构
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Sch Math & Comp Sci, Nanjing 210097, Jiangsu, Peoples R China
关键词
fractional Laplacian; multiple solutions; asymptotically linear; mountain pass theorem; Morse theory;
D O I
10.14232/ejqtde.2015.1.93
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a class of fractional Laplace equations with asymptotically linear right-hand side. The existence results of three nontrivial solutions under the resonance and non-resonance conditions are established by using the minimax method and Morse theory.
引用
收藏
页数:12
相关论文
共 18 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] On some critical problems for the fractional Laplacian operator
    Barrios, B.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) : 6133 - 6162
  • [3] Critical point theory for asymptotically quadratic functionals and applications to problems with resonance
    Bartsch, T
    Li, SJ
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) : 419 - 441
  • [4] Cabre X., 2009, ADV MATH, V42, P2052
  • [5] Cerami G., 1980, ANN MAT PUR APPL, V124, P161, DOI [10.1007/BF01795391, DOI 10.1007/BF01795391]
  • [6] Chang K.C., 1994, Topological Methods in Nonlinear Analysis, V3, P179, DOI [10.12775/TMNA.1994.008, DOI 10.12775/TMNA.1994.008]
  • [7] Chang Kung-ching, 1993, PROGR NONLINEAR DIFF, V6
  • [8] Asymptotically linear problems driven by fractional Laplacian operators
    Fiscella, Alessio
    Servadei, Raffaella
    Valdinoci, Enrico
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (16) : 3551 - 3563
  • [9] Iannizzotto A., ADV CALC VAR
  • [10] Liu JQ, 2002, NONLINEAR ANAL-THEOR, V49, P779