Multiple solutions for a class of fractional equations

被引:0
作者
Pei, Ruichang [1 ]
Zhang, Jihui [2 ]
Ma, Caochuan [1 ]
机构
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Sch Math & Comp Sci, Nanjing 210097, Jiangsu, Peoples R China
关键词
fractional Laplacian; multiple solutions; asymptotically linear; mountain pass theorem; Morse theory;
D O I
10.14232/ejqtde.2015.1.93
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a class of fractional Laplace equations with asymptotically linear right-hand side. The existence results of three nontrivial solutions under the resonance and non-resonance conditions are established by using the minimax method and Morse theory.
引用
收藏
页数:12
相关论文
共 18 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[3]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[4]  
Cabre X., 2009, ADV MATH, V42, P2052
[5]  
Cerami G., 1980, ANN MAT PUR APPL, V124, P161, DOI [10.1007/BF01795391, DOI 10.1007/BF01795391]
[6]  
Chang K.C., 1994, Topological Methods in Nonlinear Analysis, V3, P179, DOI [10.12775/TMNA.1994.008, DOI 10.12775/TMNA.1994.008]
[7]  
Chang Kung-ching, 1993, PROGR NONLINEAR DIFF, V6
[8]   Asymptotically linear problems driven by fractional Laplacian operators [J].
Fiscella, Alessio ;
Servadei, Raffaella ;
Valdinoci, Enrico .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (16) :3551-3563
[9]  
Iannizzotto A., ADV CALC VAR
[10]  
Liu JQ, 2002, NONLINEAR ANAL-THEOR, V49, P779