Existence of solutions for a p(x)-biharmonic problem under Neumann boundary conditions

被引:8
作者
Hsini, Mounir [1 ]
Irzi, Nawal [1 ]
Kefi, Khaled [1 ,2 ]
机构
[1] Univ Tunis El Manar, Dept Math, Fac Sci, Tunis, Tunisia
[2] Northern Border Univ, Fac Comp Sci & Informat Technol, Rafha, Saudi Arabia
关键词
p(x)-biharmonic operator; Ekeland's variational principle; generalized Sobolev spaces; P(X)-LAPLACIAN; EQUATIONS; MULTIPLICITY; EIGENVALUES;
D O I
10.1080/00036811.2019.1679788
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider for a given smooth bounded domain Omega of R-N, (N >= 3), the following p(x)-biharmonic type problem Delta(xi(x)vertical bar Delta u vertical bar(p(x)-2) Delta u) + a(x)vertical bar u vertical bar(p(x)-2)u = lambda partial derivative F/partial derivative u (x, u) in Omega partial derivative u/partial derivative n = 0 on partial derivative Omega partial derivative/partial derivative n (xi(x)vertical bar Delta u vertical bar(p(x)-2) Delta u) = 0 on partial derivative Omega, where lambda is a positive parameter, p is an element of C+((Omega) over bar) with p- := inf(x epsilon(Omega) over bar) p(x) > 1, xi is a function which satisfies the condition 0 < xi 1 <= xi(x) <= xi 2, a epsilon L-infinity (Omega) with essinf(x epsilon<(Omega)over bar>) a(x) > 0 and F : ((Omega) over bar) x R -> R is a C1 function. We prove the existence of a continuous family of eigenvalues in a neighbourhood of the origin, under some suitable conditions by using Ekeland's principle and variational method.
引用
收藏
页码:2188 / 2199
页数:12
相关论文
共 24 条
[1]   Existence and Multiplicity of Solutions for Kirchhoff Type Problems Involving p(x)-Biharmonic Operators [J].
Afrouzi, G. A. ;
Mirzapour, M. ;
Chung, N. T. .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (03) :289-303
[2]  
Ben Haddouch K, 2015, ANN UNIV CRAIOVA-MAT, V42, P52
[3]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[4]  
CHUNG NT, 2010, P ROY SOC EDINB A, V140, P259, DOI DOI 10.1017/S030821050800070X
[5]   Sobolev embeddings with variable exponent [J].
Edmunds, DE ;
Rákosník, J .
STUDIA MATHEMATICA, 2000, 143 (03) :267-293
[6]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[7]   Existence of solutions for a boundary problem involving p(x)-biharmonic operator [J].
El Amrouss, Abdel Rachid ;
Ourraoui, Anass .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2013, 31 (01) :179-192
[8]   Sobolev embedding theorems for spaces Wk,p(x)(Ω) [J].
Fan, XL ;
Shen, JS ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :749-760
[9]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[10]   Existence and multiplicity of solutions for p(x)-Laplacian equations in RN [J].
Fan, XL ;
Han, XY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (1-2) :173-188