Quantum machine learning in high energy physics

被引:82
作者
Guan, Wen [1 ]
Perdue, Gabriel [2 ]
Pesah, Arthur [3 ]
Schuld, Maria [4 ]
Terashi, Koji [5 ]
Vallecorsa, Sofia [6 ]
Vlimant, Jean-Roch [7 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Fermilab Quantum Inst, Fermi Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[3] Tech Univ Denmark, DTU Compute, Lyngby, Denmark
[4] Univ KwaZulu Natal, Sch Chem & Phys, ZA-4000 Durban, South Africa
[5] Univ Tokyo, ICEPP, Bunkyo Ku, 7-3-1 Hongo, Tokyo, JP 3001153, Japan
[6] CERN IT, 1 Esplanade Particules, CH-1211 Geneva, Switzerland
[7] CALTECH, PMA, Pasadena, CA 91125 USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 01期
关键词
particle physics; quantum machine learning; quantum annealing; quantum circuit; quantum variational circuit; OPTIMIZATION; ALGORITHMS;
D O I
10.1088/2632-2153/abc17d
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning has been used in high energy physics (HEP) for a long time, primarily at the analysis level with supervised classification. Quantum computing was postulated in the early 1980s as way to perform computations that would not be tractable with a classical computer. With the advent of noisy intermediate-scale quantum computing devices, more quantum algorithms are being developed with the aim at exploiting the capacity of the hardware for machine learning applications. An interesting question is whether there are ways to apply quantum machine learning to HEP. This paper reviews the first generation of ideas that use quantum machine learning on problems in HEP and provide an outlook on future applications.
引用
收藏
页数:17
相关论文
共 108 条
[1]   Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC [J].
Aad, G. ;
Abajyan, T. ;
Abbott, B. ;
Abdallah, J. ;
Khalek, S. Abdel ;
Abdelalim, A. A. ;
Abdinov, O. ;
Aben, R. ;
Abi, B. ;
Abolins, M. ;
AbouZeid, U. S. ;
Abramowicz, H. ;
Abreu, H. ;
Acharya, B. S. ;
Adamczyk, L. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Adomeit, S. ;
Adragna, P. ;
Adye, T. ;
Aefsky, S. ;
Aguilar-Saavedra, J. A. ;
Agustoni, M. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahsan, M. ;
Aielli, G. ;
Akdogan, T. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alam, M. S. ;
Alam, M. A. ;
Albert, J. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. ;
Alimonti, G. ;
Alison, J. ;
Allbrooke, B. M. M. .
PHYSICS LETTERS B, 2012, 716 (01) :1-29
[2]   Read the fine print [J].
Aaronson, Scott .
NATURE PHYSICS, 2015, 11 (04) :291-293
[3]  
Abadi Martin, 2016, Proceedings of OSDI '16: 12th USENIX Symposium on Operating Systems Design and Implementation. OSDI '16, P265
[4]   Machine Learning in High Energy Physics Community White Paper [J].
Albertsson, Kim ;
Altoe, Piero ;
Anderson, Dustin ;
Andrews, Michael ;
Espinosa, Juan Pedro Araque ;
Aurisano, Adam ;
Basara, Laurent ;
Bevan, Adrian ;
Bhimji, Wahid ;
Bonacorsi, Daniele ;
Calafiura, Paolo ;
Campanelli, Mario ;
Capps, Louis ;
Carminati, Federico ;
Carrazza, Stefano ;
Childers, Taylor ;
Coniavitis, Elias ;
Cranmer, Kyle ;
David, Claire ;
Davis, Douglas ;
Duarte, Javier ;
Erdmann, Martin ;
Eschle, Jonas ;
Farbin, Amir ;
Feickert, Matthew ;
Castro, Nuno Filipe ;
Fitzpatrick, Conor ;
Floris, Michele ;
Forti, Alessandra ;
Garra-Tico, Jordi ;
Gemmler, Jochen ;
Girone, Maria ;
Glaysher, Paul ;
Gleyzer, Sergei ;
Gligorov, Vladimir ;
Golling, Tobias ;
Graw, Jonas ;
Gray, Lindsey ;
Greenwood, Dick ;
Hacker, Thomas ;
Harvey, John ;
Hegner, Benedikt ;
Heinrich, Lukas ;
Hooberman, Ben ;
Junggeburth, Johannes ;
Kagan, Michael ;
Kane, Meghan ;
Kanishchev, Konstantin ;
Karpinski, Przemyslaw ;
Kassabov, Zahari .
18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085
[5]   Quantum Boltzmann Machine [J].
Amin, Mohammad H. ;
Andriyash, Evgeny ;
Rolfe, Jason ;
Kulchytskyy, Bohdan ;
Melko, Roger .
PHYSICAL REVIEW X, 2018, 8 (02)
[6]  
Amrouche S, 2019, SPRINGER SERIES CHAL, P231
[7]  
[Anonymous], 2019, ATLPHYSPUB2019041 CE
[8]  
[Anonymous], 2015, APPL QUANTUM ANNEALI
[9]  
[Anonymous], 2018, ARXIV180400633
[10]  
Arrazola J. M., 2019, ARXIV190510415