3D Printable Ceramic-Polymer Electrolytes for Flexible High-Performance Li-Ion Batteries with Enhanced Thermal Stability

被引:172
作者
Blake, Aaron J. [1 ,2 ]
Kohlmeyer, Ryan R. [1 ,3 ]
Hardin, James O. [1 ,3 ]
Carmona, Eric A. [1 ,4 ]
Maruyama, Benji [1 ]
Berrigan, John Daniel [1 ]
Huang, Hong [2 ]
Durstock, Michael F. [1 ]
机构
[1] Air Force Res Lab, Mat & Mfg Directorate, Soft Matter Branch, Wright Patterson AFB, OH 45433 USA
[2] Wright State Univ, Dept Mech & Mat Engn, Dayton, OH 45435 USA
[3] UES Inc, Dayton, OH 45432 USA
[4] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
composite electrolyte; flexible batteries; Li-ion batteries; phase inversion; printed batteries;
D O I
10.1002/aenm.201602920
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study establishes an approach to 3D print Li-ion battery electrolytes with controlled porosity using a dry phase inversion method. This ink formulation utilizes poly(vinyldene fluoride) in a mixture of N-methyl-2-pyrrolidone (good solvent) and glycerol (weak nonsolvent) to generate porosity during a simple drying step. When a nanosized Al2O3 filler is included in the ink, uniform sub-micrometer pore formation is attained. In other words, no additional processing steps such as coagulation baths, stretching, or etching are required for full functionality of the electrolyte, which makes it a viable candidate to enable completely additively manufactured Li-ion batteries. Compared to commercial polyolefin separators, these electrolytes demonstrate comparable high rate electrochemical performance (e.g., 5 C), but possess better wetting characteristics and enhanced thermal stability. Additionally, this dry phase inversion method can be extended to printable composite electrodes, yielding enhanced flexibility and electrochemical performance over electrodes prepared with only good solvent. Finally, sequentially printing this electrolyte ink over a composite electrode via a direct write extrusion technique has been demonstrated while maintaining expected functionality in both layers. These ink formulations are an enabling step toward completely printed batteries and can allow direct integration of a flexible power source in restricted device areas or on nonplanar surfaces.
引用
收藏
页数:10
相关论文
共 37 条
[1]  
Gwon H., Hong J., Kim H., Seo D.-H., Jeon S., Kang K., Energy Environ. Sci., 7, (2014)
[2]  
Hu Y., Sun X., J. Mater. Chem. A, 2, (2014)
[3]  
Gaikwad A.M., Arias A.C., Steingart D.A., Energy Technol., 3, (2015)
[4]  
Sousa R.E., Costa C.M., Lanceros-Mendez S., ChemSusChem, 8, (2015)
[5]  
Sun K., Wei T.-S., Ahn B.Y., Seo J.Y., Dillon S.J., Lewis J.A., Adv. Mater., 25, (2013)
[6]  
Fu K., Wang Y.B., Yan C.Y., Yao Y.G., Chen Y.A., Dai J.Q., Lacey S., Wang Y.B., Wan J.Y., Li T., Wang Z.Y., Xu Y., Hu L.B., Adv. Mater., 28, (2016)
[7]  
Vlad A., Singh N., Galande C., Ajayan P.M., Adv. Energy Mater., 5, (2015)
[8]  
Kim S.-H., Choi K.-H., Cho S.-J., Choi S., Park S., Lee S.-Y., Nano Lett., 15, (2015)
[9]  
Kang K.-Y., Lee Y.-G., Shin D.O., Kim J.-C., Kim K.M., Electrochim. Acta, 138, (2014)
[10]  
Singh N., Galande C., Miranda A., Mathkar A., Gao W., Reddy A.L.M., Vlad A., Ajayan P.M., Sci. Rep., 2, (2012)