CSRNCVA: A MODEL OF CROSS-MEDIA SEMANTIC RETRIEVAL BASED ON NEURAL COMPUTING OF VISUAL AND AUDITORY SENSATIONS

被引:3
作者
Liu, Y. [1 ,2 ]
Cai, K. [2 ,3 ]
Liu, C. [2 ,4 ]
Zheng, F. [2 ,5 ]
机构
[1] Henan Univ, Intelligent Technol & Applicat Engn Res Ctr Henan, Key Lab Big Data Anal & Proc Henan Prov, Kaifeng 475004, Peoples R China
[2] Henan Univ, Coll Comp Sci & Informat Engn, Kaifeng 475004, Peoples R China
[3] Henan Univ, Intelligent Technol & Applicat Engn Res Ctr Henan, Kaifeng 475004, Peoples R China
[4] Henan Univ, Key Lab Big Data Anal & Proc Henan Prov, Kaifeng 475004, Peoples R China
[5] Henan Univ, Engn Lab Spatial Informat Henan Prov, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
cross-media cognitive neural computing; cross-media semantic retrieval; deep belief network; hierarchical temporal memory; probabilistic graphical model; hierarchical reinforcement learning;
D O I
10.14311/NNW.2018.28.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-media semantic retrieval (CSR) and cross-modal semantic mapping are key problems of the multimedia search engine. The cognitive function and neural structure for visual and auditory information process are an important reference for the study of brain-inspired CSR. In this paper, we analyze the hierarchy, the functionality and the structure of visual and auditory in the brain. Considering an idea from deep belief network and hierarchical temporal memory, we presented a brain-inspired intelligent model, called cross-media semantic retrieval based on neural computing of visual and auditory sensation (CSRNCVA). Algorithms based on CSRNCVA were developed. It employs belief propagation algorithms of probabilistic graphical model and hierarchical learning. The experiments show that our model and algorithms can be effectively applied to the CSR. This work provides an important significance for brain-inspired cross-media intelligence framework.
引用
收藏
页码:305 / 323
页数:19
相关论文
共 35 条
[1]  
[Anonymous], 2008, ACM INT C MULT INF R
[2]  
[Anonymous], 2016, High Technology Letters, DOI DOI 10.3772/J.ISSN.1006-6748.2016.01.013
[3]  
[Anonymous], MULTIMEDIA MODELING
[4]  
[Anonymous], SCI CHINA INFOR SCI
[5]  
[Anonymous], ARXIV 1706 05137
[6]  
[Anonymous], 2011, P 28 INT C MACH LEAR
[7]  
[Anonymous], ARXIV180501385
[8]   Probabilistic Topic Models [J].
Blei, David M. .
COMMUNICATIONS OF THE ACM, 2012, 55 (04) :77-84
[9]   A cross-media public sentiment analysis system for microblog [J].
Cao, Donglin ;
Ji, Rongrong ;
Lin, Dazhen ;
Li, Shaozi .
MULTIMEDIA SYSTEMS, 2016, 22 (04) :479-486
[10]   DaDianNao: A Machine-Learning Supercomputer [J].
Chen, Yunji ;
Luo, Tao ;
Liu, Shaoli ;
Zhang, Shijin ;
He, Liqiang ;
Wang, Jia ;
Li, Ling ;
Chen, Tianshi ;
Xu, Zhiwei ;
Sun, Ninghui ;
Temam, Olivier .
2014 47TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2014, :609-622