Bases of standard modules for ane Lie algebras of type Cl(1)

被引:4
作者
Trupcevic, Goran [1 ]
机构
[1] Univ Zagreb, Fac Teacher Educ, Savska Cesta 77, Zagreb 10000, Croatia
关键词
Ane Lie algebras; combinatorial bases; Primary: 17B67; Secondary: 17B69; 05A19; BASIC REPRESENTATIONS; COMBINATORIAL BASES; AFFINE; MODELS;
D O I
10.1080/00927872.2018.1424874
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Feigin-Stoyanovsky's type subspaces for ane Lie algebras of type C-l((1)) have monomial bases with a nice combinatorial description. We describe bases of whole standard modules in terms of semi-infinite monomials obtained as a limit of translations of bases for Feigin-Stoyanovsky's type subspaces.
引用
收藏
页码:3663 / 3673
页数:11
相关论文
共 15 条
[1]  
Baranovi I., 2016, RAMANUJAN J, DOI [10. 1007/s11139-016-9840-y1007-1051, DOI 10.1007/S11139-016-9840-Y1007-1051]
[2]   Simple currents and extensions of vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (03) :671-707
[4]   BASIC REPRESENTATIONS OF AFFINE LIE-ALGEBRAS AND DUAL RESONANCE MODELS [J].
FRENKEL, IB ;
KAC, VG .
INVENTIONES MATHEMATICAE, 1980, 62 (01) :23-66
[5]   The automorphisms of affine fusion rings [J].
Gannon, T .
ADVANCES IN MATHEMATICS, 2002, 165 (02) :165-193
[6]  
Humphreys J.E., 1994, Introduction to Lie algebras and Representation Theory
[7]  
KAC V. G., 1990, INFINITE DIMENSIONAL, VThird, DOI DOI 10.1017/CBO9780511626234
[8]  
Lepowsky J., 1985, CONT MATH, V46
[9]  
Lepowsky J., 2004, Introduction to vertex operator algebras and their representations
[10]   Basic representations for classical affine Lie algebras [J].
Primc, M .
JOURNAL OF ALGEBRA, 2000, 228 (01) :1-50