Monomial bases for q-Schur algebras

被引:37
作者
Du, J [1 ]
Parshall, B
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
关键词
D O I
10.1090/S0002-9947-02-03188-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Beilinson-Lusztig-MacPherson construction of the quantized enveloping algebra of gl(n) and its associated monomial basis, we investigate q-Schur algebras S-q(n,r) as "little quantum groups". We give a presentation for S-q (n, r) and obtain a new basis for the integral q-Schur algebra S-q(n, r), which consists of certain monomials in the original generators. Finally, when n greater than or equal to r, we interpret the Hecke algebra part of the monomial basis for S-q(n, r) in terms of Kazhdan-Lusztig basis elements.
引用
收藏
页码:1593 / 1620
页数:28
相关论文
共 24 条
[1]   A GEOMETRIC SETTING FOR THE QUANTUM DEFORMATION OF GLN [J].
BEILINSON, AA ;
LUSZTIG, G ;
MACPHERSON, R .
DUKE MATHEMATICAL JOURNAL, 1990, 61 (02) :655-677
[2]   On degenerations and extensions of finite dimensional modules [J].
Bongartz, K .
ADVANCES IN MATHEMATICS, 1996, 121 (02) :245-287
[3]  
Chari V., 1998, CONT MATH, V248, P69
[4]  
DENG B, IN PRESS BASES QUANT
[5]  
DIPPER R, 1989, P LOND MATH SOC, V59, P23
[6]   Q-TENSOR SPACE AND Q-WEYL MODULES [J].
DIPPER, R ;
JAMES, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 327 (01) :251-282
[7]  
Doty S, 2002, INT MATH RES NOTICES, V2002, P1907
[8]  
DOTY S, PRESENTING QUANTUM S
[9]   Based algebras and standard bases for quasi-hereditary algebras [J].
Du, J ;
Rui, HB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (08) :3207-3235
[10]   Quantum Weyl reciprocity and tilting modules [J].
Du , J ;
Parshall, B ;
Scott, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (02) :321-352