On the finite-element approximation of ∞-harmonic functions

被引:4
作者
Pryer, Tristan [1 ]
机构
[1] Univ Reading, Dept Math & Stat, Reading RG6 6AX, Berks, England
关键词
Galerkin methods; infinity-Laplacian; viscosity solutions; VISCOSITY SOLUTIONS; P-LAPLACIAN; CONSTRUCTION; CONVERGENCE; UNIQUENESS; NORM;
D O I
10.1017/S0308210517000294
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that conforming Galerkin approximations for p-harmonic functions tend to infinity-harmonic functions in the limit p -> 0 and h -> 0, where h denotes the Galerkin discretization parameter.
引用
收藏
页码:819 / 834
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 2015, SPRINGERBRIEFS MATH
[2]  
[Anonymous], 1978, STUDIES MATH ITS APP
[3]   An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions [J].
Armstrong, Scott N. ;
Smart, Charles K. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :381-384
[5]   MINIMIZATION PROBLEMS FOR FUNCTIONAL SUPX F(X F(X) F'(X)) [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1965, 6 (01) :33-&
[6]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[7]   FINITE-ELEMENT APPROXIMATION OF THE PARABOLIC P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :413-428
[8]  
Bozorgnia F., 2015, TECHNICAL REPORT
[9]   Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian [J].
Burman, Erik ;
Ern, Alexandre .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (17-18) :1013-1016
[10]   A posteriori Fe error control for p-laplacian by gradient recovery in quasi-norm [J].
Carstensen, Carsten ;
Liu, W. ;
Yan, N. .
MATHEMATICS OF COMPUTATION, 2006, 75 (256) :1599-1616