Manipulating rogue wave triplet in optical waveguides through tapering

被引:7
作者
Gupta, Rama [1 ]
Kumar, C. N. [2 ]
Vyas, Vivek M. [3 ]
Panigrahi, Prasanta K. [4 ]
机构
[1] DAV Univ, Dept Phys, Jalandhar 144008, India
[2] Panjab Univ, Dept Phys, Chandigarh 160014, India
[3] Inst Math Sci, Madras 600113, Tamil Nadu, India
[4] Indian Inst Sci Educ & Res Kolkata, Mohanpur 741252, Nadia, India
关键词
Rogue wave triplets; Tapered graded-index waveguide; Isospectral Hamiltonian approach; NONLINEAR SCHRODINGER-EQUATION; NLS;
D O I
10.1016/j.physleta.2014.10.053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Taking account of the results of the paper, published in [21] (Chabchoub and Akhmediev, 2013), containing experimental generation of rogue wave triplets in the water tank, we demonstrate a theoretical approach to coherently control the rogue wave triplet dynamics and spectral spread in a tapered index optical waveguide. The relative distance between the successive waves of the triplet, along both longitudinal and transverse axes, can be manipulated by modulating the tapering of the waveguide. This not only significantly enhances the possibility of observing these statistically rare events in the waveguide, but can also controllably amplify the intensity and spectral spread, the desired features for supercontinuum generation. The controlling of real Riccati parameter intrinsically arises from the allowed phase variation of the self-similar solutions of the nonlinear Schrodinger equation. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:314 / 318
页数:5
相关论文
共 36 条
[1]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[2]   Rogue wave triplets [J].
Ankiewicz, Adrian ;
Kedziora, David J. ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2011, 375 (28-29) :2782-2785
[3]   Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation [J].
Atre, Rajneesh ;
Panigrahi, Prasanta K. ;
Agarwal, G. S. .
PHYSICAL REVIEW E, 2006, 73 (05)
[4]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[5]  
Broad W. J., 2006, NY TIMES
[6]   Observation of rogue wave triplets in water waves [J].
Chabchoub, A. ;
Akhmediev, N. .
PHYSICS LETTERS A, 2013, 377 (38) :2590-2593
[7]  
Cooper F., 2001, Supersymmetry in Quantum Mechanics
[8]   Controllable rogue waves in the nonautonomous nonlinear system with a linear potential [J].
Dai, C. Q. ;
Zheng, C. L. ;
Zhu, H. P. .
EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (04)
[9]   Controllable behaviours of rogue wave triplets in the nonautonomous nonlinear and dispersive system [J].
Dai, Chao-Qing ;
Tian, Qing ;
Zhu, Shi-Qun .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (08)
[10]  
Didenkulova I, 2008, EXTREME OCEAN WAVES, P83, DOI 10.1007/978-1-4020-8314-3_5