Capacity of the two-way relay channel within a constant gap

被引:49
作者
Avestimehr, Amir Salman [2 ]
Sezgin, Aydin [1 ]
Tse, David N. C. [3 ]
机构
[1] Univ Ulm, Inst Telecommun & Appl Informat Theory, TAIT, Emmy Noether Res Grp Wireless Networks, D-89081 Ulm, Germany
[2] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
[3] Univ Calif Berkeley, Wireless Fdn, Berkeley, CA USA
来源
EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS | 2010年 / 21卷 / 04期
基金
美国国家科学基金会;
关键词
DIVERSITY;
D O I
10.1002/ett.1399
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We study the capacity of the full-duplex bidirectional (or two-way) relay channel with two nodes and one relay. The channels in the forward direction are assumed to be different (in general) than the channels in the backward direction, i.e. channel reciprocity is not assumed. We use the recently proposed deterministic approach to capture the essence of the problem and to determine a good transmission and relay strategy for the Gaussian channel. Depending on the ratio of the individual channel gains, we propose to use either a simple amplify-and-forward or a particular superposition coding strategy at the relay. We analyse the achievable rate region and show that the scheme achieves to within 3 bits the cut-set bound for all values of channel gains. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:363 / 374
页数:12
相关论文
共 25 条
[1]  
Avestimehr A. S., 2008, THESIS UC BERKELEY
[2]  
AVESTIMEHR S, 2007, 45 ALL C COMM CONTR
[3]  
AVESTIMEHR S, 2008, P IEEE ISIT 2006 TOR
[4]  
Baik I.-J., 2007, P IEEE ICC 2008 BEIJ, P3898
[5]  
Bresler G., 2007, P ALL C COMM CONTR C
[6]   BROADCAST CHANNELS [J].
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (01) :2-+
[7]  
COVER TM, 1979, IEEE T INFORM THEORY, V25, P572, DOI 10.1109/TIT.1979.1056084
[8]   Gaussian Interference Channel Capacity to Within One Bit [J].
Etkin, Raul H. ;
Tse, David N. C. ;
Wang, Hua .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (12) :5534-5562
[9]  
Hausl C., 2006, P IEEE ICC 2006 IST
[10]  
Horn R.A., 2012, Matrix Analysis