Weak rate of convergence of the Euler-Maruyama scheme for stochastic differential equations with non-regular drift

被引:23
|
作者
Kohatsu-Higa, Arturo [1 ]
Lejay, Antoine [2 ,3 ,4 ]
Yasuda, Kazuhiro [5 ]
机构
[1] Ritsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[2] Japan Sci & Technol Agcy, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[3] Univ Lorraine, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[4] CNRS, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[5] INRIA, F-54500 Villers Les Nancy, France
关键词
Stochastic differential equation; Euler-Maruyama scheme; Discontinuous drift; Weak rate of convergence; Malliavin calculus; MALLIAVIN CALCULUS; APPROXIMATION; DIFFUSION; BOUNDS; SDES;
D O I
10.1016/j.cam.2017.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an Euler-Maruyama type approximation method for a stochastic differential equation (SDE) with a non-regular drift and regular diffusion coefficient. The method regularizes the drift coefficient within a certain class of functions and then the Euler-Maruyama scheme for the regularized scheme is used as an approximation. This methodology gives two errors. The first one is the error of regularization of the drift coefficient within a given class of parametrized functions. The second one is the error of the regularized Euler -Maruyama scheme. After an optimization procedure with respect to the parameters we obtain various rates, which improve other known results. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 158
页数:21
相关论文
共 50 条
  • [41] The truncated Euler-Maruyama method for stochastic differential equations with Holder diffusion coefficients
    Yang, Hao
    Wu, Fuke
    Kloeden, Peter E.
    Mao, Xuerong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366
  • [42] On the performance of the Euler-Maruyama scheme for SDEs with discontinuous drift coefficient
    Mueller-Gronbach, Thomas
    Yaroslavtseva, Larisa
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 1162 - 1178
  • [43] Truncated Euler-Maruyama method for classical and time-changed non-autonomous stochastic differential equations
    Liu, Wei
    Mao, Xuerong
    Tang, Jingwen
    Wu, Yue
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 66 - 81
  • [44] Weak convergence of Euler scheme for SDEs with low regular drift
    Suo, Yongqiang
    Yuan, Chenggui
    Zhang, Shao-Qin
    NUMERICAL ALGORITHMS, 2022, 90 (02) : 731 - 747
  • [45] Analytical and numerical investigation of stochastic differential equations with applications using an exponential Euler-Maruyama approach
    Ranjbar, H.
    Torkzadeh, L.
    Nouri, K.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01)
  • [46] GEOMETRIC EULER-MARUYAMA SCHEMES FOR STOCHASTIC DIFFERENTIAL EQUATIONS IN SO(n) AND SE(n)
    Piggott, M. J.
    Solo, V.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2490 - 2516
  • [47] Convergence Rate of Euler-Maruyama Scheme for SDEs with Holder-Dini Continuous Drifts
    Bao, Jianhai
    Huang, Xing
    Yuan, Chenggui
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (02) : 848 - 871
  • [48] CONVERGENCE IN TOTAL VARIATION OF THE EULER-MARUYAMA SCHEME APPLIED TO DIFFUSION PROCESSES WITH MEASURABLE DRIFT COEFFICIENT AND ADDITIVE NOISE
    Bencheikh, Oumaima
    Jourdain, Benjamin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) : 1701 - 1740
  • [49] Strong convergence of Euler-Maruyama schemes for McKean-Vlasov stochastic differential equations under local Lipschitz conditions of state variables
    Li, Yun
    Mao, Xuerong
    Song, Qingshuo
    Wu, Fuke
    Yin, George
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) : 1001 - 1035
  • [50] Truncated Euler-Maruyama method for stochastic differential equations driven by fractional Brownian motion with super-linear drift coefficient
    He, Jie
    Gao, Shuaibin
    Zhan, Weijun
    Guo, Qian
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (12) : 2184 - 2195