Weak rate of convergence of the Euler-Maruyama scheme for stochastic differential equations with non-regular drift
被引:23
|
作者:
Kohatsu-Higa, Arturo
论文数: 0引用数: 0
h-index: 0
机构:
Ritsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, JapanRitsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
Kohatsu-Higa, Arturo
[1
]
Lejay, Antoine
论文数: 0引用数: 0
h-index: 0
机构:
Japan Sci & Technol Agcy, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
Univ Lorraine, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
CNRS, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, FranceRitsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
Lejay, Antoine
[2
,3
,4
]
Yasuda, Kazuhiro
论文数: 0引用数: 0
h-index: 0
机构:
INRIA, F-54500 Villers Les Nancy, FranceRitsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
Yasuda, Kazuhiro
[5
]
机构:
[1] Ritsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[2] Japan Sci & Technol Agcy, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[3] Univ Lorraine, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[4] CNRS, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
We consider an Euler-Maruyama type approximation method for a stochastic differential equation (SDE) with a non-regular drift and regular diffusion coefficient. The method regularizes the drift coefficient within a certain class of functions and then the Euler-Maruyama scheme for the regularized scheme is used as an approximation. This methodology gives two errors. The first one is the error of regularization of the drift coefficient within a given class of parametrized functions. The second one is the error of the regularized Euler -Maruyama scheme. After an optimization procedure with respect to the parameters we obtain various rates, which improve other known results. (C) 2017 Elsevier B.V. All rights reserved.
机构:
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Liu, Wei
Mao, Xuerong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, ScotlandShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Mao, Xuerong
Tang, Jingwen
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Tang, Jingwen
Wu, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Univ Edinburgh, Sch Engn, Edinburgh EH9 3JW, Midlothian, Scotland
Univ Oxford, Math Inst, Oxford OX2 6GG, England
Alan Turing Inst, London NW1 2DB, EnglandShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
机构:
Semnan Univ, Fac Math Stat & Comp Sci, Dept Math, POB 35195-363, Semnan, IranSemnan Univ, Fac Math Stat & Comp Sci, Dept Math, POB 35195-363, Semnan, Iran
Ranjbar, H.
论文数: 引用数:
h-index:
机构:
Torkzadeh, L.
Nouri, K.
论文数: 0引用数: 0
h-index: 0
机构:
Semnan Univ, Fac Math Stat & Comp Sci, Dept Math, POB 35195-363, Semnan, IranSemnan Univ, Fac Math Stat & Comp Sci, Dept Math, POB 35195-363, Semnan, Iran
机构:
Jiangsu Second Normal Univ, Dept Math, Nanjing, Peoples R ChinaJiangsu Second Normal Univ, Dept Math, Nanjing, Peoples R China
He, Jie
Gao, Shuaibin
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai, Peoples R ChinaJiangsu Second Normal Univ, Dept Math, Nanjing, Peoples R China
Gao, Shuaibin
Zhan, Weijun
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Dept Math, Wuhu, Peoples R ChinaJiangsu Second Normal Univ, Dept Math, Nanjing, Peoples R China
Zhan, Weijun
Guo, Qian
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R ChinaJiangsu Second Normal Univ, Dept Math, Nanjing, Peoples R China