Weak rate of convergence of the Euler-Maruyama scheme for stochastic differential equations with non-regular drift
被引:23
|
作者:
Kohatsu-Higa, Arturo
论文数: 0引用数: 0
h-index: 0
机构:
Ritsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, JapanRitsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
Kohatsu-Higa, Arturo
[1
]
Lejay, Antoine
论文数: 0引用数: 0
h-index: 0
机构:
Japan Sci & Technol Agcy, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
Univ Lorraine, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
CNRS, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, FranceRitsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
Lejay, Antoine
[2
,3
,4
]
Yasuda, Kazuhiro
论文数: 0引用数: 0
h-index: 0
机构:
INRIA, F-54500 Villers Les Nancy, FranceRitsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
Yasuda, Kazuhiro
[5
]
机构:
[1] Ritsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[2] Japan Sci & Technol Agcy, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[3] Univ Lorraine, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[4] CNRS, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
We consider an Euler-Maruyama type approximation method for a stochastic differential equation (SDE) with a non-regular drift and regular diffusion coefficient. The method regularizes the drift coefficient within a certain class of functions and then the Euler-Maruyama scheme for the regularized scheme is used as an approximation. This methodology gives two errors. The first one is the error of regularization of the drift coefficient within a given class of parametrized functions. The second one is the error of the regularized Euler -Maruyama scheme. After an optimization procedure with respect to the parameters we obtain various rates, which improve other known results. (C) 2017 Elsevier B.V. All rights reserved.
机构:
Shanghai Normal Univ, Dept Math, Shanghai, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai, Peoples R China
Guo, Qian
Liu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai, Peoples R China
Liu, Wei
Mao, Xuerong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
Univ Strathclyde, Dept Math & Stat, Glasgow, Lanark, ScotlandShanghai Normal Univ, Dept Math, Shanghai, Peoples R China
Mao, Xuerong
Zhan, Weijun
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai, Peoples R China
机构:
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Shanghai Normal Univ, Lab Educ Big Data & Policymaking, Shanghai 200234, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Liu, Wei
Mao, Xuerong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, ScotlandShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Mao, Xuerong
Wu, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, ScotlandShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
机构:
Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
Chen, Peng
Jin, Xinghu
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Math, Hefei 230601, Anhui, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
Jin, Xinghu
Xiao, Yimin
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USANanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
Xiao, Yimin
Xu, Lihu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Macau, Fac Sci & Technol, Dept Math, Macau, Peoples R China
Zhuhai UM Sci & Technol Res Inst, Zhuhai, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China