Weak rate of convergence of the Euler-Maruyama scheme for stochastic differential equations with non-regular drift

被引:23
作者
Kohatsu-Higa, Arturo [1 ]
Lejay, Antoine [2 ,3 ,4 ]
Yasuda, Kazuhiro [5 ]
机构
[1] Ritsumeikan Univ, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[2] Japan Sci & Technol Agcy, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[3] Univ Lorraine, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[4] CNRS, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[5] INRIA, F-54500 Villers Les Nancy, France
关键词
Stochastic differential equation; Euler-Maruyama scheme; Discontinuous drift; Weak rate of convergence; Malliavin calculus; MALLIAVIN CALCULUS; APPROXIMATION; DIFFUSION; BOUNDS; SDES;
D O I
10.1016/j.cam.2017.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an Euler-Maruyama type approximation method for a stochastic differential equation (SDE) with a non-regular drift and regular diffusion coefficient. The method regularizes the drift coefficient within a certain class of functions and then the Euler-Maruyama scheme for the regularized scheme is used as an approximation. This methodology gives two errors. The first one is the error of regularization of the drift coefficient within a given class of parametrized functions. The second one is the error of the regularized Euler -Maruyama scheme. After an optimization procedure with respect to the parameters we obtain various rates, which improve other known results. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 158
页数:21
相关论文
共 49 条
[1]  
[Anonymous], 1992, Applications of mathematics
[2]  
[Anonymous], 2007, CLASSICS MATH
[3]  
[Anonymous], 1992, Theory of function spaces, DOI DOI 10.1007/978-3-0346-0419-2
[4]   Interpolation and approximation of piecewise smooth functions [J].
Arandiga, F ;
Cohen, A ;
Donat, R ;
Dyn, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) :41-57
[5]  
ARNOLD S., 2006, THESIS
[6]   STOCHASTIC FLOWS OF DIFFEOMORPHISMS FOR ONE-DIMENSIONAL SDE WITH DISCONTINUOUS DRIFT [J].
Attanasio, Stefano .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 :213-226
[7]   On irregular functionals of SDEs and the Euler scheme [J].
Avikainen, Rainer .
FINANCE AND STOCHASTICS, 2009, 13 (03) :381-401
[8]   The law of the Euler scheme for stochastic differential equations .1. Convergence rate of the distribution function [J].
Bally, V ;
Talay, D .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) :43-60
[9]  
BALLY V., 1996, Monte Carlo Methods Appl, V2, P93, DOI [10.1515/mcma.1996.2.2.93, DOI 10.1515/MCMA.1996.2.2.93]
[10]  
Bass R F., 1998, PROB APPL S