Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models

被引:144
作者
Yousefi, Safoora [1 ]
Amrollahi, Fatemeh [1 ]
Amgad, Mohamed [1 ]
Dong, Chengliang [2 ]
Lewis, Joshua E. [3 ,4 ]
Song, Congzheng [5 ]
Gutman, David A. [6 ]
Halani, Sameer H. [4 ]
Vega, Jose Enrique Velazquez [7 ]
Brat, Daniel J. [7 ,8 ]
Cooper, Lee A. D. [1 ,3 ,4 ,8 ]
机构
[1] Emory Univ, Dept Biomed Informat, Sch Med, Atlanta, GA 30322 USA
[2] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USA
[3] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30322 USA
[4] Emory Univ, Sch Med, Atlanta, GA 30322 USA
[5] Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
[6] Emory Univ, Dept Neurol, Sch Med, Atlanta, GA 30322 USA
[7] Emory Univ, Dept Pathol & Lab Med, Sch Med, Atlanta, GA 30322 USA
[8] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
NETWORK; RECURRENCE; SIGNATURE; SUBTYPES;
D O I
10.1038/s41598-017-11817-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Translating the vast data generated by genomic platforms into accurate predictions of clinical outcomes is a fundamental challenge in genomic medicine. Many prediction methods face limitations in learning from the high-dimensional profiles generated by these platforms, and rely on experts to hand-select a small number of features for training prediction models. In this paper, we demonstrate how deep learning and Bayesian optimization methods that have been remarkably successful in general high-dimensional prediction tasks can be adapted to the problem of predicting cancer outcomes. We perform an extensive comparison of Bayesian optimized deep survival models and other state of the art machine learning methods for survival analysis, and describe a framework for interpreting deep survival models using a risk backpropagation technique. Finally, we illustrate that deep survival models can successfully transfer information across diseases to improve prognostic accuracy. We provide an open-source software implementation of this framework called SurvivalNet that enables automatic training, evaluation and interpretation of deep survival models.
引用
收藏
页数:11
相关论文
共 36 条
[21]   Deep Feature Selection: Theory and Application to Identify Enhancers and Promoters [J].
Li, Yifeng ;
Chen, Chih-Yu ;
Wasserman, Wyeth W. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2016, 23 (05) :322-336
[22]   The Molecular Signatures Database Hallmark Gene Set Collection [J].
Liberzon, Arthur ;
Birger, Chet ;
Thorvaldsdottir, Helga ;
Ghandi, Mahmoud ;
Mesirov, Jill P. ;
Tamayo, Pablo .
CELL SYSTEMS, 2015, 1 (06) :417-425
[23]   The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary [J].
Louis, David N. ;
Perry, Arie ;
Reifenberger, Guido ;
von Deimling, Andreas ;
Figarella-Branger, Dominique ;
Cavenee, Webster K. ;
Ohgaki, Hiroko ;
Wiestler, Otmar D. ;
Kleihues, Paul ;
Ellison, David W. .
ACTA NEUROPATHOLOGICA, 2016, 131 (06) :803-820
[24]  
Martinez-Cantin R, 2014, J MACH LEARN RES, V15, P3735
[25]  
Nemati S, 2016, IEEE ENG MED BIO, P2978, DOI 10.1109/EMBC.2016.7591355
[26]   Most Human Non-GCIMP Glioblastoma Subtypes Evolve from a Common Proneural-like Precursor Glioma [J].
Ozawa, Tatsuya ;
Riester, Markus ;
Cheng, Yu-Kang ;
Huse, Jason T. ;
Squatrito, Massimo ;
Helmy, Karim ;
Charles, Nikki ;
Michor, Franziska ;
Holland, Eric C. .
CANCER CELL, 2014, 26 (02) :288-300
[27]   Deep learning [J].
Rusk, Nicole .
NATURE METHODS, 2016, 13 (01) :35-35
[28]  
Simon N, 2011, J STAT SOFTW, V39, P1
[29]  
Snoek J., 2012, Advances in Neural Information Processing Systems 25 (NIPS 2012), V25
[30]   A Multigene Expression Assay to Predict Local Recurrence Risk for Ductal Carcinoma In Situ of the Breast [J].
Solin, Lawrence J. ;
Gray, Robert ;
Baehner, Frederick L. ;
Butler, Steven M. ;
Hughes, Lorie L. ;
Yoshizawa, Carl ;
Cherbavaz, Diana B. ;
Shak, Steven ;
Page, David L. ;
Sledge, George W., Jr. ;
Davidson, Nancy E. ;
Ingle, James N. ;
Perez, Edith A. ;
Wood, William C. ;
Sparano, Joseph A. ;
Badve, Sunil .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2013, 105 (10) :701-710