Fabrication and wear resistance of Ni-CeO2 nanocomposite coatings by electrodeposition under ultrasound condition

被引:12
作者
Xue, Yu-Jun [1 ]
Li, Ji-Shun [2 ]
Ma, Wei [1 ]
Duan, Ming-De [1 ]
Lan, Ming-Ming [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Electromech Engn, Luoyang 471003, Peoples R China
[2] Henan Key Lab Mech Design & Transmiss Syst, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni-CeO2; nanoparticles; nanocomposite coating; electrodeposition; ultrasound; microhardness; wear resistance; surface engineering; crystal orientation; COMPOSITE COATINGS; CORROSION-RESISTANCE; MECHANICAL-PROPERTIES; MICROSTRUCTURE; NANO;
D O I
10.1504/IJSURFSE.2010.033248
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Ni-CeO2 nanocomposite coatings were fabricated by electrodeposition from a modified Watt's type electrolyte containing CeO2 nanoparticles with an average particle size of 30 nm, where an ultrasonic field was imposed during electrodeposition process. The surface morphologies, crystal structure, vickers hardness and wear resistance of the coatings were examined. It was found that the Ni-CeO2 nanocomposite coating fabricated with ultrasound exhibited finer grains and more compact structure compared to the pure Ni coating and also the Ni-CeO2 nanocomposite coating fabricated without ultrasound. The crystal orientation of Ni-CeO2 nanocomposite coatings greatly changed in the presence of ultrasound. Furthermore, the imposition of ultrasound gave rise to increased hardness and wear resistance of the Ni-CeO2 nanocomposite coating.
引用
收藏
页码:202 / 213
页数:12
相关论文
共 25 条
[1]   Synthesis and properties of electrodeposited Ni/ceria nanocomposite coatings [J].
Aruna, S. T. ;
Bindu, C. N. ;
Selvi, V. Ezhil ;
Grips, V. K. William ;
Rajam, K. S. .
SURFACE & COATINGS TECHNOLOGY, 2006, 200 (24) :6871-6880
[2]   Wear corrosion properties of nano-structured SiC-nickel composite coatings obtained by electroplating [J].
Benea, L ;
Bonora, PL ;
Borello, A ;
Martelli, S .
WEAR, 2001, 249 (10-11) :995-1003
[3]   Electrocodeposition and characterization of cobalt lanthanide oxides composite coatings [J].
Carac, G. ;
Bund, A. ;
Thiemig, D. .
SURFACE & COATINGS TECHNOLOGY, 2007, 202 (02) :403-411
[4]   Electrodeposition of Ni-Co/Al2O3 composite coating by pulse reverse method under ultrasonic condition [J].
Chang, L. M. ;
Guo, H. F. ;
An, M. Z. .
MATERIALS LETTERS, 2008, 62 (19) :3313-3315
[5]   Microstructure and properties of Ni-Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition [J].
Chang, L. M. ;
An, M. Z. ;
Guo, H. F. ;
Shi, S. Y. .
APPLIED SURFACE SCIENCE, 2006, 253 (04) :2132-2137
[6]   Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni-Al2O3 composite coatings [J].
Chen, Li ;
Wang, Liping ;
Zeng, Zhixiang ;
Xu, Tao .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (3-4) :599-605
[7]   Periodic reverse current electrodeposition of gold in an ultrasonic field using ion-track membranes as templates: growth of gold single-crystals [J].
Dobrev, D ;
Vetter, J ;
Angert, N ;
Neumann, R .
ELECTROCHIMICA ACTA, 2000, 45 (19) :3117-3125
[8]   Tribological study of Ni matrix composite coatings containing nano and micro SiC particles [J].
Gyftou, P ;
Stroumbouli, M ;
Pavlatou, EA ;
Asimidis, P ;
Spyrellis, N .
ELECTROCHIMICA ACTA, 2005, 50 (23) :4544-4550
[9]   Mechanical and corrosion-resistance performance of electrodepo sited titania-nickel nanocomposite coatings [J].
Li, J ;
Sun, Y ;
Sun, X ;
Qiao, J .
SURFACE & COATINGS TECHNOLOGY, 2005, 192 (2-3) :331-335
[10]   Electrodeposition of composite coatings containing nanoparticles in a metal deposit [J].
Low, C. T. J. ;
Wills, R. G. A. ;
Walsh, F. C. .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (1-2) :371-383