How to complete performance graphs in content-based image retrieval: Add generality and normalize scope

被引:48
作者
Huijsmans, DP
Sebe, N
机构
[1] Leiden Univ, Leiden Inst Adv Comp Sci, NL-2300 RA Leiden, Netherlands
[2] Univ Amsterdam, Fac Sci, NL-1098 SJ Amsterdam, Netherlands
关键词
multimedia information systems; information retrieval; content-based image retrieval; performance evaluation;
D O I
10.1109/TPAMI.2005.30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The performance of a Content-Based Image Retrieval (CBIR) system, presented in the form of Precision-Recall or Precision-Scope graphs, offers an incomplete overview of the system under study: The influence of the irrelevant items ( embedding) is obscured. In this paper, we propose a comprehensive and well-normalized description of the ranking performance compared to the performance of an Ideal Retrieval System defined by ground-truth for a large number of predefined queries. We advocate normalization with respect to relevant class size and restriction to specific normalized scope values ( the number of retrieved items). We also propose new three and two-dimensional performance graphs for total recall studies in a range of embeddings.
引用
收藏
页码:245 / 251
页数:7
相关论文
共 19 条
[1]   A probabilistic solution to the selection and fusion problem in distributed information retrieval [J].
Baumgarten, C .
SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, :246-253
[2]   The Bayesian image retrieval system, PicHunter:: Theory, implementation, and psychophysical experiments [J].
Cox, IJ ;
Miller, ML ;
Minka, TP ;
Papathomas, TV ;
Yianilos, PN .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (01) :20-37
[3]  
GOKHALE DV, 1978, INFORMATION CONTINGE
[4]  
Huijsmans DP, 2003, 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, P733
[5]  
Huijsmans DP, 2001, PROC CVPR IEEE, P26
[6]  
HUIJSMANS DP, 2000, P 4 INT C ADV VIS IN, P500
[7]   Performance evaluation in content-based image retrieval:: overview and proposals [J].
Müller, H ;
Müller, W ;
Squire, DM ;
Marchand-Maillet, S ;
Pun, T .
PATTERN RECOGNITION LETTERS, 2001, 22 (05) :593-601
[8]  
MULLER H, 2002, P INT C IM VID RETR, P38
[9]   Query refinement for multimedia similarity retrieval in MARS [J].
Porkaew, K ;
Chakrabarti, K ;
Mehrotra, S .
ACM MULTIMEDIA 99, PROCEEDINGS, 1999, :235-238
[10]   A CRITICAL INVESTIGATION OF RECALL AND PRECISION AS MEASURES OF RETRIEVAL-SYSTEM PERFORMANCE [J].
RAGHAVAN, VV ;
JUNG, GS ;
BOLLMANN, P .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1989, 7 (03) :205-229