Fluorescence calibration method for single-particle aerosol fluorescence instruments

被引:25
|
作者
Robinson, Ellis Shipley [1 ,2 ,3 ]
Gao, Ru-Shan [1 ]
Schwarz, Joshua P. [1 ]
Fahey, David W. [1 ]
Perring, Anne E. [1 ,2 ]
机构
[1] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA
[2] Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA
关键词
PRIMARY BIOLOGICAL AEROSOL; CLUSTER-ANALYSIS; PRECIPITATION; SPECTROMETER; NUCLEI; SENSOR; WIBS;
D O I
10.5194/amt-10-1755-2017
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Real-time, single-particle fluorescence instruments used to detect atmospheric bioaerosol particles are increasingly common, yet no standard fluorescence calibration method exists for this technique. This gap limits the utility of these instruments as quantitative tools and complicates comparisons between different measurement campaigns. To address this need, we have developed a method to produce size-selected particles with a known mass of fluorophore, which we use to calibrate the fluorescence detection of a Wideband Integrated Bioaerosol Sensor (WIBS-4A). We use mixed tryptophan-ammonium sulfate particles to calibrate one detector (FL1; excitation = 280 nm, emission = 310-400 nm) and pure quinine particles to calibrate the other (FL2; excitation = 280 nm, emission = 420-650 nm). The relationship between fluorescence and mass for the mixed tryptophan-ammonium sulfate particles is linear, while that for the pure quinine particles is nonlinear, likely indicating that not all of the quinine mass contributes to the observed fluorescence. Nonetheless, both materials produce a repeatable response between observed fluorescence and particle mass. This procedure allows users to set the detector gains to achieve a known absolute response, calculate the limits of detection for a given instrument, improve the repeatability of the instrumental setup, and facilitate intercomparisons between different instruments. We recommend calibration of single-particle fluorescence instruments using these methods.
引用
收藏
页码:1755 / 1768
页数:14
相关论文
共 50 条
  • [1] Single-particle analysis for fluorescence nanoscopy
    Bates, Mark
    NATURE METHODS, 2018, 15 (10) : 771 - 772
  • [2] Single-particle analysis for fluorescence nanoscopy
    Mark Bates
    Nature Methods, 2018, 15 : 771 - 772
  • [3] Single-Particle Resolution Fluorescence Microscopy of Nanoplastics
    Nguyen, Brian
    Tufenkji, Nathalie
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (10) : 6426 - 6435
  • [4] Protein labeling for single-particle fluorescence microscopy
    Huang, SJ
    Serwer, P
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 44A - 45A
  • [5] Single-particle fluorescence spectrometer for ambient aerosols
    Pan, YL
    Hartings, J
    Pinnick, RG
    Hill, SC
    Halverson, J
    Chang, RK
    AEROSOL SCIENCE AND TECHNOLOGY, 2003, 37 (08) : 628 - 639
  • [6] Performance bounds on single-particle tracking by fluorescence modulation
    A.J. Berglund
    H. Mabuchi
    Applied Physics B, 2006, 83 : 127 - 133
  • [7] Single-particle studies of the plasmonic fluorescence in gold nanocubes
    Huang, Jane
    Yu, Pyng
    Yuan, Chi-Tsu
    Ko, Hsien-Chen
    Tang, Jau
    Hsieh, Tao-Shih
    JOURNAL OF NANOPHOTONICS, 2012, 6
  • [8] Single-Particle Fluorescence Intensity Fluctuations of Carbon Nanodots
    Das, Somes K.
    Liu, Yiyang
    Yeom, Sinhea
    Kim, Doo Young
    Richards, Christopher I.
    NANO LETTERS, 2014, 14 (02) : 620 - 625
  • [9] Performance bounds on single-particle tracking by fluorescence modulation
    Berglund, AJ
    Mabuchi, H
    APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 83 (01): : 127 - 133
  • [10] Fluorescence preselection of bioaerosol for single-particle mass spectrometry
    Stowers, M. A.
    van Wuijckhuijse, A. L.
    Marijnissen, J. C. M.
    Kientz, Ch. E.
    Ciach, T.
    APPLIED OPTICS, 2006, 45 (33) : 8531 - 8536