Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts

被引:21
作者
Zhang, Lihua [1 ,2 ]
Zhang, Shihua [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, RCSDS, NCMIS,CEMS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China
[4] Chinese Acad Sci, Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Biol, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
single-cell RNA-seq; dropout; imputation; low-rank; systems biology;
D O I
10.1093/jmcb/mjaa052
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Single-cell RNA sequencing (scRNA-seq) provides a powerful tool to determine expression patterns of thousands of individual cells. However, the analysis of scRNA-seq data remains a computational challenge due to the high technical noise such as the presence of dropout events that lead to a large proportion of zeros for expressed genes. Taking into account the cell heterogeneity and the relationship between dropout rate and expected expression level, we present a cell sub-population based bounded low-rank (PBLR) method to impute the dropouts of scRNA-seq data. Through application to both simulated and real scRNA-seq datasets, PBLR is shown to be effective in recovering dropout events, and it can dramatically improve the low-dimensional representation and the recovery of genegene relationships masked by dropout events compared to several state-of-the-art methods. Moreover, PBLR also detects accurate and robust cell sub-populations automatically, shedding light on its flexibility and generality for scRNA-seq data analysis.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 37 条
[21]  
Liu CP, 2018, IEEE INT CONF COMM
[22]   Fixed point and Bregman iterative methods for matrix rank minimization [J].
Ma, Shiqian ;
Goldfarb, Donald ;
Chen, Lifeng .
MATHEMATICAL PROGRAMMING, 2011, 128 (1-2) :321-353
[23]   Visualizing structure and transitions in high-dimensional biological data [J].
Moon, Kevin R. ;
van Dijk, David ;
Wang, Zheng ;
Gigante, Scott ;
Burkhardt, Daniel B. ;
Chen, William S. ;
Yim, Kristina ;
van den Elzen, Antonia ;
Hirn, Matthew J. ;
Coifman, Ronald R. ;
Ivanova, Natalia B. ;
Wolf, Guy ;
Krishnaswamy, Smita .
NATURE BIOTECHNOLOGY, 2019, 37 (12) :1482-+
[24]   Single-cell sequencing [J].
Nawy, Tal .
NATURE METHODS, 2014, 11 (01) :18-18
[25]  
Prabhakaran S, 2016, PR MACH LEARN RES, V48
[26]  
Qiu XJ, 2017, NAT METHODS, V14, P979, DOI [10.1038/NMETH.4402, 10.1038/nmeth.4402]
[27]   Spatial reconstruction of single-cell gene expression data [J].
Satija, Rahul ;
Farrell, Jeffrey A. ;
Gennert, David ;
Schier, Alexander F. ;
Regev, Aviv .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :495-U206
[28]   Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics [J].
Shekhar, Karthik ;
Lapan, Sylvain W. ;
Whitney, Irene E. ;
Tran, Nicholas M. ;
Macosko, Evan Z. ;
Kowalczyk, Monika ;
Adiconis, Xian ;
Levin, Joshua Z. ;
Nemesh, James ;
Goldman, Melissa ;
McCarroll, Steven A. ;
Cepko, Constance L. ;
Regev, Aviv ;
Sanes, Joshua R. .
CELL, 2016, 166 (05) :1308-+
[29]   From Louvain to Leiden: guaranteeing well-connected communities [J].
Traag, V. A. ;
Waltman, L. ;
van Eck, N. J. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[30]   Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq [J].
Treutlein, Barbara ;
Lee, Qian Yi ;
Camp, J. Gray ;
Mall, Moritz ;
Koh, Winston ;
Shariati, Seyed Ali Mohammad ;
Sim, Sopheak ;
Neff, Norma F. ;
Skotheim, Jan M. ;
Wernig, Marius ;
Quake, Stephen R. .
NATURE, 2016, 534 (7607) :391-+