Generalized Killing tensors

被引:12
作者
Collinson, CD [1 ]
Howarth, L [1 ]
机构
[1] Univ Hull, Dept Math, Hull HU6 7RX, N Humberside, England
关键词
Killing tensor; geodesic; first integrals;
D O I
10.1023/A:1001928513274
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Generalized Killing tensors are defined and the integrability conditions discussed to show that the familiar result that a space of constant curvature admits the maximum number of Killing vectors and second order Killing tensors does not necessarily generalize. The existence of second order Generalized Killing Yano tensors in spherically symmetric static space-times is investigated and a non-redundant example is given. Ir is proved that the natural vector analogue of the Lenz-Runge vector does not exist.
引用
收藏
页码:1767 / 1776
页数:10
相关论文
共 50 条
[21]   Killing Tensor and Carter Constant for Painleve-Gullstrand Form of Lense-Thirring Spacetime [J].
Baines, Joshua ;
Berry, Thomas ;
Simpson, Alex ;
Visser, Matt .
UNIVERSE, 2021, 7 (12)
[22]   Magnetic Trajectories in Killing Magnetic Backgrounds Framed in 3D pp-Waves [J].
Iqbal, Zafar .
JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (01)
[23]   Magnetic Trajectories in Killing Magnetic Backgrounds Framed in 3D pp-Waves [J].
Zafar Iqbal .
Journal of Nonlinear Science, 2023, 33
[24]   The generalized polynomial Moon-Rand system [J].
Gine, Jaume ;
Valls, Claudia .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 :411-417
[25]   Algebraic integrability and generalized symmetries of dynamical systems [J].
Ünal, G .
PHYSICS LETTERS A, 1999, 260 (05) :352-359
[26]   Generalized normal forms for polynomial vector fields [J].
Palacián, J ;
Yanguas, P .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (04) :445-469
[27]   Generalized Chordality, Vertex Separators and Hyperbolicity on Graphs [J].
Martinez-Perez, Alvaro .
SYMMETRY-BASEL, 2017, 9 (10)
[28]   Generalized Developable Cubic Trigonometric Bezier Surfaces [J].
Ammad, Muhammad ;
Misro, Md Yushalify ;
Abbas, Muhammad ;
Majeed, Abdul .
MATHEMATICS, 2021, 9 (03) :1-17
[29]   Real hypersurfaces with Killing type structure Jacobi operators in CP2 and CH2 [J].
Wang, Yaning ;
Wang, Wenjie .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2018, 25 (03) :403-414
[30]   Killing Horizons and Surface Gravities for a Well-Behaved Three-Function Generalization of the Kerr Spacetime [J].
Baines, Joshua ;
Visser, Matt .
UNIVERSE, 2023, 9 (05)