Generalized Killing tensors

被引:12
|
作者
Collinson, CD [1 ]
Howarth, L [1 ]
机构
[1] Univ Hull, Dept Math, Hull HU6 7RX, N Humberside, England
关键词
Killing tensor; geodesic; first integrals;
D O I
10.1023/A:1001928513274
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Generalized Killing tensors are defined and the integrability conditions discussed to show that the familiar result that a space of constant curvature admits the maximum number of Killing vectors and second order Killing tensors does not necessarily generalize. The existence of second order Generalized Killing Yano tensors in spherically symmetric static space-times is investigated and a non-redundant example is given. Ir is proved that the natural vector analogue of the Lenz-Runge vector does not exist.
引用
收藏
页码:1767 / 1776
页数:10
相关论文
共 50 条
  • [1] Generalized Killing Tensors
    C. D. Collinson
    L. Howarth
    General Relativity and Gravitation, 2000, 32 : 1767 - 1776
  • [2] On Symmetric Killing Tensors and Codazzi Tensors of Ranks p ≥ 2
    Stepanov S.E.
    Aleksandrova I.A.
    Tsyganok I.I.
    Journal of Mathematical Sciences, 2023, 276 (3) : 443 - 469
  • [3] Killing tensors in Koutras-Mcintosh spacetimes
    Kruglikov, Boris
    Steneker, Wijnand
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (22)
  • [4] Lax pair tensors and integrable spacetimes
    Rosquist, K
    Goliath, M
    GENERAL RELATIVITY AND GRAVITATION, 1998, 30 (10) : 1521 - 1534
  • [5] Lax Pair Tensors and Integrable Spacetimes
    Kjell Rosquist
    Martin Goliath
    General Relativity and Gravitation, 1998, 30 : 1521 - 1534
  • [6] On integrability of the Killing equation
    Houri, Tsuyoshi
    Tomoda, Kentaro
    Yasui, Yukinori
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (07)
  • [7] Killing symmetry on the Finsler manifold
    Ootsuka, Takayoshi
    Yahagi, Ryoko
    Ishida, Muneyuki
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (09)
  • [8] The study of the canonical forms of Killing tensor in vacuum with Λ
    Kokkinos, D.
    Papakostas, T.
    GENERAL RELATIVITY AND GRAVITATION, 2024, 56 (11)
  • [9] Killing vector fields of constant length on Riemannian manifolds
    Berestovskii, V. N.
    Nikonorov, Yu. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (03) : 395 - 407
  • [10] Killing Tensor Spinor Forms and Their Application in Riemannian Geometry
    Somberg, Petr
    HYPERCOMPLEX ANALYSIS AND APPLICATIONS, 2011, : 233 - 247